
Disks and RAID

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, F. Schneider, E. Sirer, R. Van Renesse]

• disk.getsize()
• returns the #blocks on the disk
• disk.read(offset) à block
• returns the block at the given offset
• disk.write(offset, block)
• writes the block at the given offset

Disk Abstraction

2

• Fast: data is there when you want it
• Reliable: data fetched is what you stored
• Plenty: there should be lots of it
• Affordable: won’t break the bank

What do we want from storage?

3

• Magnetic disks (HDD)
• Flash drives (SSD)

Storage Devices

4

THAT WAS THEN
• 13th September 1956
• The IBM RAMAC 350
• Total Storage = 5 million characters
 (about 3.75 MB)

Magnetic Disks are 65 years old!

5http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

THIS IS NOW
• 2.5-3.5” hard drive
• Example: 500GB Western Digital

Scorpio Blue hard drive
• easily up to a few TB

RAM (Memory) vs HDD (Disk) vs SSD, 2020’s

6

RAM HDD SSD
Typical Size 16 GB 1 TB 1TB
Cost $5-10 per GB $0.05 per GB $0.10 per GB
Latency 15 ns 15 ms 1ms
Throughput
(Sequential) 8000 MB/s 175 MB/s 500 MB/s
Power Reliance volatile non-volatile non-volatile

Track

Sector

Head
Arm

Arm
Assembly

Platter

Surface

Surface

Motor Motor

Spindle

Must specify:
• cylinder #

(distance from spindle)
• head #
• sector #
• transfer size
• memory address

Reading from disk

7

Track

Sector

Head
Arm

Arm
Assembly

Platter

Surface

Surface

Motor Motor

Spindle

~ 1 micron wide (1000 nm)
• Wavelength of light is ~ 0.5 micron
• Resolution of human eye: 50 microns
• 100K tracks on a typical 2.5” disk

Track length varies across disk
• Outside:
-More sectors per track
- Higher bandwidth

• Most of disk area in outer regions

Disk Tracks

8

Track*

*not to scale: head is actually much bigger than a track

Sector

Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs (ms))
• Rotational Latency: to get to the sector (4-8 millisecs (ms))

(on average, only need to wait half a rotation)
• Transfer: get bits off the disk (25-50 microsecs (μs))

Disk overheads

9

Track

Sector Seek Time

Rotational
Latency

Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Metric: how many cylinders traversed?

Disk Scheduling

10

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO

11

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO

12

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

640 cylinders

• Select request with minimum seek time from
current head position

• A form of Shortest Job First (SJF) scheduling
• Not optimal: suppose cluster of requests at far end

of disk ➜ starvation!

SSTF Schedule?
Total head movement?

Disk Scheduling: Shortest Seek Time First

13

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Select request with minimum seek time from
current head position

• A form of Shortest Job First (SJF) scheduling
• Not optimal: suppose cluster of requests at far end

of disk ➜ starvation!

SSTF Schedule?
Total head movement?

Disk Scheduling: Shortest Seek Time First

14

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

236 cylinders

Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests
• movement reversed @ end of disk
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN

15

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests
• movement reversed @ end of disk
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN

16

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

208 cylinders

Circular list treatment:
• head moves from one end to other
• servicing requests as it goes
• reaches the end, returns to beginning
• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

17

C-SCAN Schedule?
Total Head movement?
Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Most SSDs based on NAND-flash
• retains its state for years without power

Solid State Drives (Flash)

18

Charge is stored in Floating Gate
(can have Single and Multi-Level Cells)

NAND Flash

19https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Floating Gate MOSFET (FGMOS)

• Erase block: sets each cell to “1”
• erase granularity = “erasure block” = 128-512 KB
• time: several ms

• Write (aka program) page: can only write erased
pages
• write granularity = 1 page (2-4KBytes)
• time: 100s of microseconds

• Read page:
• read granularity = 1 page
• time: 10s of microseconds

• Flash drive consists of several banks that can be
accessed in parallel
• Each bank can have thousands of blocks

Flash Operations

20

• can’t write 1 word or page
•must first erase whole blocks to write a page

• limited # of erase cycles per block (memory wear)
• 103-106 erases and the cell wears out
• reads can “disturb” nearby words and overwrite them with

garbage

• Lots of techniques to compensate:
• error correcting codes
• bad page/erasure block management
• wear leveling: trying to distribute erasures across the entire

driver

Flash Limitations

21

Flash Translation Layer
Flash device firmware maps logical page #
to a physical location
• Garbage collect erasure block by copying live pages to

new location, then erase
• Wear-leveling: only write each physical page a limited

number of times
• Sector sparing: Remap pages that no longer work

Transparent to the device user

22

• Fast: data is there when you want it
• Reliable: data fetched is what you stored
• Plenty: there should be lots of it
• Affordable: won’t break the bank

What do we want from storage?

23

• Either individual blocks
• bit flips
• scratches on hard disk platter
• wear on SSD
• Or the entire disk
• damage to hard disk head

• Metrics: MTTF and MTTR
• Mean Time To Failure
• Mean Time To Repair

Disks can fail

24

• Throughput is usually measured in
“number of operations per second”
• Bandwidth is usually measured in

“number of bytes per second”
• Latency is usually measured in “seconds”

Throughput and bandwidth are essentially
the same thing, as each disk read/write
operation transfers a fixed number of bytes
(“block size”)

Throughput, Bandwidth, and Latency

25

• If you do one operation at a time, then
Latency × Throughput = 1.
• e.g., if it takes 100 ms to do a read or write

operation, then you can do 10 operations
per second

• But operations can often be pipelined or
executed in parallel
• throughput higher than 1/latency
• (road analogy)

Latency vs Throughput

26

• With disks and file systems, sequential
access is usually much faster than
random access
• Reasons for faster sequential access:
• “fewer seeks” on the disk
• blocks can be “prefetched”

Sequential vs Random access

27

• Redundant Array of Inexpensive Disks
• In industry, “I” is for “Independent”
• The alternative is SLED, single large expensive disk
• RAID + RAID controller looks just like SLED to computer

• yay, abstraction!

RAID

28

Files striped across disks
+ Fast
 latency?
 throughput?
+ Cheap
 capacity?
– Unreliable
 max #failures?
 MTTF?

RAID-0

29

stripe 0
stripe 2
stripe 4
stripe 6
stripe 8

stripe 10
stripe 12
stripe 14

Disk 0
stripe 1
stripe 3
stripe 5
stripe 7
stripe 9

stripe 11
stripe 13
stripe 15

Disk 1

.

Striping reduces reliability
• More disks ➜ higher probability of some disk failing
• N disks: 1/Nth mean time between failures of 1 disk

What can we do to improve Disk Reliability?

Striping and Reliability

30

😞

Disks Mirrored:
data written in 2 places

+ Reliable
 deals well with disk loss

but not corruption
 (how many needed for that?)
+ Fast
 latency?
 throughput?
– Expensive

RAID-1

31

data 0
data 1
data 2
data 3
data 4
data 5
data 6
data 7

Disk 1

. . .

data 0
data 1
data 2
data 3
data 4
data 5
data 6
data 7

Disk 0

. . .

bit-level striping with ECC codes
• 7 disk arms synchronized, move in unison
• Complicated controller (➜ very unpopular)
• Detect & Correct 1 error with no performance degradation

+ Reliable
– Expensive
parity 1 = 3⊕5⊕7

parity 2 = 3⊕6⊕7

parity 4 = 5⊕6⊕7

RAID-2

32

bit 2
bit 6

bit 10
bit 14

Disk 5

bit 1
bit 5
bit 9

bit 13

Disk 3Disk 2

parity 1
parity 4
parity 7
parity 10

Disk 1

parity 3
parity 6
parity 9
parity 12

Disk 4

parity 2
parity 5
parity 8
parity 11

bit 3
bit 7

bit 11
bit 15

Disk 6

bit 4
bit 8

bit 12
bit 16

Disk 7
001 010 011 100 101 110 111

RAID-3: byte-level striping + parity disk
• read accesses all data disks
• write accesses all data disks + parity disk
• On disk failure: read parity disk, compute missing data
RAID-4: block-level striping + parity disk
+ better spatial locality for disk access

+ Cheap
– Slow Writes
– Reliability?

2 more rarely-used RAIDS

35

data 2
data 6

data 10
data 14

Disk 2
data 1
data 5
data 9

data 13

Disk 1
parity 1
parity 2
parity 3
parity 4

Disk 5
data 3
data 7

data 11
data 15

Disk 3
data 4
data 8

data 12
data 16

Disk 4

• 𝐷! = 𝐷"⊕ 𝐷# ⊕ … ⊕ 𝐷!$"
• ⊕ = XOR operation
• therefore 𝐷!⊕ 𝐷" ⊕ … ⊕ 𝐷# = 0
• If one of 𝐷"… 𝐷!$" fails, we can

reconstruct its data by XOR-ing all the
remaining drives
• 𝐷$ = 𝐷!⊕ … ⊕ 𝐷$%! ⊕	𝐷$&!⊕ … ⊕ 𝐷#

Using a parity disk

36

• Suppose block lives on disk 𝐷!
• Method 1:
• read corresponding blocks on 𝐷! … 𝐷"#$
• XOR all with new content of block
• write disk 𝐷$ and 𝐷" in parallel
• Method 2 (better):
• read 𝐷$ (old content) and 𝐷"
• 𝐷"% = 𝐷" ⊕ 𝐷$ ⊕ 𝐷$%
 = 𝐷$⊕ 𝐷! ⊕ … ⊕ 𝐷"#$⊕ 𝐷$ ⊕ 𝐷$%
 = 𝐷$% ⊕ 𝐷! ⊕ … ⊕ 𝐷"#$
• write disk 𝐷$ and 𝐷" in parallel
• write throughput: ½ of single disk
- parity disk is the bottleneck
• write latency: double of single disk

Updating a block in RAID-4

37

• Save up updates to stripe across 𝐷!… 𝐷#%!
• Batching!
• Compute 𝐷# = 𝐷!⊕ 𝐷" ⊕ … ⊕ 𝐷#%!
• Write 𝐷!… 𝐷# in parallel
• Throughput: (𝑁 − 1) times single disk

• Note that in all write cases 𝐷# must always be
updated
è𝐷" is a write performance bottleneck
èand suffers from more wear than the other disks

Streaming update in RAID-4

38

+ Reliable
 you can lose one disk
+ Fast
 (𝑁 − 1) x seq. write throughput of single disk
 𝑁 x random read throughput of single disk
 𝑁/4 x random write throughput of single disk
+ Affordable

RAID 5: Rotating Parity w/Striping

40

parity 0-3
data 4
data 8

data 12
data 16

Disk 0
data 0

parity 4-7
data 9

data 13
data 17

Disk 1
data 1
data 5

parity 8-11
data 14
data 18

Disk 2
data 2
data 6

data 10
parity 12-15

data 19

Disk 3
data 3
data 7

data 11
data 15

parity 16-19

Disk 4

