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• disk.getsize()
• returns the #blocks on the disk
• disk.read(offset) à block
• returns the block at the given offset
• disk.write(offset, block)
• writes the block at the given offset

Disk Abstraction
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• Fast: data is there when you want it
• Reliable: data fetched is what you stored
• Plenty: there should be lots of it
• Affordable: won’t break the bank

What do we want from storage?
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• Magnetic disks (HDD)
• Flash drives (SSD)

Storage Devices
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THAT WAS THEN
• 13th September 1956 
• The IBM RAMAC 350
• Total Storage = 5 million characters
                                (about 3.75 MB)

Magnetic Disks are 65 years old!

5http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

THIS IS NOW
• 2.5-3.5” hard drive
• Example: 500GB Western Digital 

Scorpio Blue hard drive
• easily up to a few TB



RAM (Memory) vs HDD (Disk) vs SSD, 2020’s
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RAM HDD SSD
Typical Size 16 GB 1 TB 1TB
Cost $5-10 per GB $0.05 per GB $0.10 per GB
Latency 15 ns 15 ms 1ms
Throughput 
(Sequential) 8000 MB/s 175 MB/s 500 MB/s
Power Reliance volatile non-volatile non-volatile
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Must specify:
• cylinder #

(distance from spindle)
• head #
• sector #
• transfer size
• memory address

Reading from disk
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~ 1 micron wide (1000 nm)
• Wavelength of light is ~ 0.5 micron
• Resolution of human eye: 50 microns
• 100K tracks on a typical 2.5” disk

Track length varies across disk
• Outside: 
-More sectors per track
- Higher bandwidth

• Most of disk area in outer regions

Disk Tracks
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Track*

*not to scale: head is actually much bigger than a track

Sector



Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs (ms))
• Rotational Latency: to get to the sector (4-8 millisecs (ms)) 

(on average, only need to wait half a rotation)
• Transfer: get bits off the disk (25-50 microsecs (μs))

Disk overheads
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Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Metric: how many cylinders traversed? 

Disk Scheduling
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

640 cylinders



• Select request with minimum seek time from 
current head position

• A form of Shortest Job First (SJF) scheduling 
• Not optimal: suppose cluster of requests at far end 

of disk ➜ starvation!

SSTF Schedule?
Total head movement? 

Disk Scheduling: Shortest Seek Time First
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



• Select request with minimum seek time from 
current head position

• A form of Shortest Job First (SJF) scheduling 
• Not optimal: suppose cluster of requests at far end 

of disk ➜ starvation!

SSTF Schedule?
Total head movement? 

Disk Scheduling: Shortest Seek Time First
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

236 cylinders



Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests 
• movement reversed @ end of disk 
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests 
• movement reversed @ end of disk 
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

208 cylinders



Circular list treatment:
• head moves from one end to other
• servicing requests as it goes
• reaches the end, returns to beginning
• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN
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C-SCAN Schedule?
Total Head movement?
Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



Most SSDs based on NAND-flash
• retains its state for years without power

Solid State Drives (Flash)
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Charge is stored in Floating Gate
(can have Single and Multi-Level Cells)

NAND Flash

19https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Floating Gate MOSFET (FGMOS)



• Erase block: sets each cell to “1”
• erase granularity = “erasure block” = 128-512 KB
• time: several ms

• Write (aka program) page: can only write erased 
pages 
• write granularity = 1 page (2-4KBytes)
• time: 100s of microseconds

• Read page: 
• read granularity = 1 page
• time: 10s of microseconds

• Flash drive consists of several banks that can be 
accessed in parallel
• Each bank can have thousands of blocks

Flash Operations
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• can’t write 1 word or page
•must first erase whole blocks to write a page

• limited # of erase cycles per block (memory wear)
• 103-106 erases and the cell wears out
• reads can “disturb” nearby words and overwrite them with 

garbage

• Lots of techniques to compensate:
• error correcting codes
• bad page/erasure block management
• wear leveling: trying to distribute erasures across the entire 

driver

Flash Limitations
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Flash Translation Layer
Flash device firmware maps logical page # 
to a physical location
• Garbage collect erasure block by copying live pages to 

new location, then erase
• Wear-leveling: only write each physical page a limited 

number of times
• Sector sparing: Remap pages that no longer work

Transparent to the device user
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• Fast: data is there when you want it
• Reliable: data fetched is what you stored
• Plenty: there should be lots of it
• Affordable: won’t break the bank

What do we want from storage?
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• Either individual blocks
• bit flips
• scratches on hard disk platter
• wear on SSD
• Or the entire disk
• damage to hard disk head

• Metrics: MTTF and MTTR
• Mean Time To Failure
• Mean Time To Repair

Disks can fail
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• Throughput is usually measured in 
“number of operations per second”
• Bandwidth is usually measured in 

“number of bytes per second”
• Latency is usually measured in “seconds”

Throughput and bandwidth are essentially 
the same thing, as each disk read/write 
operation transfers a fixed number of bytes 
(“block size”)

Throughput, Bandwidth, and Latency
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• If you do one operation at a time, then 
Latency × Throughput = 1.
• e.g., if it takes 100 ms to do a read or write 

operation, then you can do 10 operations 
per second

• But operations can often be pipelined or 
executed in parallel
• throughput higher than 1/latency
• (road analogy)

Latency vs Throughput
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• With disks and file systems, sequential 
access is usually much faster than 
random access
• Reasons for faster sequential access:
• “fewer seeks” on the disk
• blocks can be “prefetched”

Sequential vs Random access
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• Redundant Array of Inexpensive Disks
• In industry, “I” is for “Independent”
• The alternative is SLED, single large expensive disk
• RAID + RAID controller looks just like SLED to computer

• yay, abstraction!

RAID
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Files striped across disks
+ Fast
 latency?
 throughput?
+ Cheap
 capacity?
– Unreliable
 max #failures?
 MTTF?

RAID-0
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stripe 0
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Disk 1

. . .. . .



Striping reduces reliability
• More disks ➜ higher probability of some disk failing
• N disks: 1/Nth mean time between failures of 1 disk

What can we do to improve Disk Reliability?
     

Striping and Reliability
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😞



Disks Mirrored: 
data written in 2 places

+ Reliable
 deals well with disk loss 

but not corruption
                (how many needed for that?)
+ Fast
 latency?
 throughput? 
– Expensive

RAID-1
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bit-level striping with ECC codes
• 7 disk arms synchronized, move in unison
• Complicated controller (➜ very unpopular)
• Detect & Correct 1 error with no performance degradation

+ Reliable
– Expensive
parity 1 = 3⊕5⊕7

parity 2 = 3⊕6⊕7

parity 4 = 5⊕6⊕7

RAID-2
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RAID-3: byte-level striping + parity disk
• read accesses all data disks
• write accesses all data disks + parity disk
• On disk failure: read parity disk, compute missing data
RAID-4: block-level striping + parity disk
+ better spatial locality for disk access

+ Cheap
– Slow Writes
– Reliability?
 

2 more rarely-used RAIDS
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• 𝐷! = 𝐷"⊕ 𝐷# ⊕ … ⊕ 𝐷!$" 
• ⊕ = XOR operation
• therefore 𝐷!⊕ 𝐷" ⊕ … ⊕ 𝐷#  = 0
• If one of 𝐷"… 𝐷!$" fails, we can 

reconstruct its data by XOR-ing all the 
remaining drives
• 𝐷$ = 𝐷!⊕ … ⊕ 𝐷$%! ⊕	𝐷$&!⊕ … ⊕ 𝐷#  

Using a parity disk
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• Suppose block lives on disk 𝐷!
• Method 1:
• read corresponding blocks on 𝐷! … 𝐷"#$
• XOR all with new content of block
• write disk 𝐷$ and 𝐷" in parallel
• Method 2 (better):
• read 𝐷$ (old content) and 𝐷"
• 𝐷"% = 𝐷" ⊕ 𝐷$ ⊕ 𝐷$%
  = 𝐷$⊕ 𝐷! ⊕ … ⊕ 𝐷"#$⊕ 𝐷$ ⊕ 𝐷$%
  = 𝐷$% ⊕ 𝐷! ⊕ … ⊕ 𝐷"#$
• write disk 𝐷$ and 𝐷" in parallel
• write throughput: ½ of single disk
- parity disk is the bottleneck
• write latency: double of single disk

Updating a block in RAID-4
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• Save up updates to stripe across 𝐷!… 𝐷#%!
• Batching!
• Compute 𝐷# = 𝐷!⊕ 𝐷" ⊕ … ⊕ 𝐷#%!
• Write 𝐷!… 𝐷# in parallel
• Throughput: (𝑁 − 1) times single disk

• Note that in all write cases 𝐷# must always be 
updated
è𝐷" is a write performance bottleneck
èand suffers from more wear than the other disks

Streaming update in RAID-4
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+ Reliable
 you can lose one disk
+ Fast
 (𝑁 − 1) x seq. write throughput of single disk
 𝑁 x random read throughput of single disk
 𝑁/4 x random write throughput of single disk
+ Affordable

RAID 5: Rotating Parity w/Striping
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