On Abstraction

* Cornerstone of system design
* managing complexity
* Abstraction
* |nterface: methods + behaviors
— Queue: Queue(), put(), get()
— Stack: Stack(), push(), pop(), post()

- R/W lock: RW(), rAcquire, rRelease, wAcquire, wRelease
* Behaviors under concurrency??

- typically want same as if all operations happen atomically
sometime between invocation and completion

— (but some abstractions might give weaker guarantees in
exchange for improved performance)

On Abstraction, cont’d

* Whatis a good abstraction?
» Justice Potter Stewart: know it when | see it
* Hide implementation details
— abstraction can be implemented in many different ways
« we saw four different implementations of R/W locks already
* there are many more
- helps with maintainability
* encapsulation
* Cohesion: focused on a single task
- no unrelated methods
* Separate policy and mechanism
- when possible

* What abstractions are good?
* queue, stack, lock, R/W lock, process, thread, virtual
memory, file, ...

Black Box Testing

* Not allowed to look under the covers
e can’tuse rw->nreaders, etc.

* Only allowed to invoke the interface methods
and observe behaviors

* Your job: try to find bad behaviors
* compare against a specification
* how would you test a clock? An ATM machine?

* |n general testing cannot ensure correctness
* only a correctness proof can

* testing may or may not expose a bug
* model checking helps expose bugs

Actors, Barriers, Interrupts
Harmony Book Chapters: 20, 21, 22

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[Robbert van Renesse]

Actor Model

* An actor is a type of process

* Each actor has an incoming message queue

* No other shared state

* Actors communicate by “message passing”
* placing messages on message queues

* Supports modular concurrent programs

* Actors and message queues are abstractions

Mutual Exclusion with Actors

» Data structure owned by a “server actor”
* Client actors can send request messages to the server and receive response

messages if necessary
 Server actor awaits requests on its queue and executes one request at a time

>4

e Mutual Exclusion (one request at a time)
* Progress (requests eventually get to the head of the queue)

* Fairness (requests are handled in FCFS order)

Conditional Critical Sections with Actors

* An actor can “wait” for a condition by
waiting for a specific message

* An actor can “notify” another actor by
sending it a message

Parallel processing with Actors

* Organize program with a Manager Actor and a collection of
Worker Actors

* Manager Actor sends work requests to the Worker Actors

* Worker Actors send completion requests to the Manager Actor

worker 1

/

—> head >

s

(o0ne

Pipeline Parallelism with Actors

* Organize program as a chain of actors

* For example, REST/HTTP server

* Network receive actor = HTTP parser actor
- REST request actor = Application actor
-> REST response actor > HTTP response

actor 2 Network send actor

automatic flow control (when actors run at different rates)
* with bounded buffer queues

Support for actors in programming
languages

* Native support in languages such as
Scala and Erlang

* ”blocking queues” in Python, Harmony,
Java

» Actor support libraries for Java, C, ...

Actors also nicely generalize to distributed
systems!

10

Actor disadvantages?

* Doesn’t work well for “fine-grained”

synchronization

» overhead of message passing much higher
than lock/unlock

» Sending/receiving messages just to
access a data structure leads to
significant extra code

11

2ar

1o

rer

nization

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

12

Barrier Synchronization: the opposite
of mutual exclusion...

 Set of processes run in rounds

* Must all complete a round before starting
the next

* Popular in simulation, HPC, graph
processing, model checking...

Barrier abstraction

* Barrier(N): barrier for N threads
* bwait(): wait for everybody to catch up

=& flemington
285758 ;

Test program for barriers

1 | import barrier

2

3 | const NTHREADS = 3

4 | const NROUNDS = 4

5

6 | round = [0, * NTHREADS

7 | invariant (max(round) - min(round)) <= 1 ﬁ
8

9 | barr = barrier.Barrier(NTHREADS)
10

11 | def thread(self):

12 for r in {@..NROUNDS-1}:

13 barrier.bwait(?barr)

14 round[self] += 1

15

16 | for 1 in {0..NTHREADS-1}:

17 spawn thread(1i)

Barrier Implementation

1 | from synch import *

2

3 | def Barrier(required) returns barrier:

4 barrier = {

5 .mutex: Lock(), .cond: Condition(),

6 .required: required, .left: required, .cycle: 0

/ 3

8 | State:

- bwalFCb);b - Lock/Condition

1? E(—:ST;;:(; ;mUtex) - required: #threads

12 if b-sleft —— 0 - left: #threads that have
13 b->cycle = (b->cycle + 1) % 2 not reached the barrier
14 b->left = b->required - cycle: allows re-use of
15 notifyAll(?b->cond) barrier. Incremented
o slee: each round

17 let cycle = b->cycle:

18 while b->cycle == cycle:

19 wait(?b->cond, ?b->mutex)

20 release(?b->mutex)

Interrupt
Hanaling

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

17

Interrupt handling

* When executing in user space, a device
interrupt is invisible to the user process

— State of user process is unaffected by the device interrupt
and its subsequent handling

— This is because contexts are switched back and forth

- So, the user space context is exactly restored to the state it
was in before the interrupt

18

Interrupt handling

* However, there are also “in-context”

Interrupts:

* kernel code can be interrupted
* user code can handle “signals”

—> Potential for race conditions

19

“Traps” in Harmony

1 | count = 0

/2 | done = False

3 ,
o .. check c_ount ==11n
5 the final state

6 | def handler():

7/ count += 1

8 done = True

9

10 | def main(): :

1 rraplhardler© invoke Pandler() at
12 T R some future time
13 Within the same thread!
14 | spawn main() (trap # spawn)

But what now?

O oo N UT A WN B

e el el el
v Hp W INEFEES

count = 0
done = False

finally count ==

def handler():
count += 1
done = True

def main():

trap handler()
count += 1
await done

spawn main()

But what now?

Summary: something went wrong in an execution

O oo N UT A WN B

e el el el
v Hp W INEFEES

count = 0
done = False

finally count ==

def handler():
count += 1
done = True

def main():

trap handler()
count += 1
await done

spawn main()

e Schedule thread To: init()

o

o

o

Line 1: Initialize count to o
Line 2: Initialize done to False

Thread terminated

o Schedule thread T1: main()

o

o

o

o

o

o

o

Line 12: Interrupted: jump to interrupt handler first
Line 12: Interrupts disabled

Line 7: Set count to 1 (was 0)

Line 8: Set done to True (was False)

Line 6: Interrupts enabled

Line 12: Set count to 1 (unchanged)

Thread terminated

o Schedule thread T2: finally()

o

Line 4: Harmony assertion failed

L ocks to the rescue?

1 | from synch import Lock, acquire, release
2

3 | countlock = Lock()

4 | count = 0

5 | done = False

6

7 | finally count == 2

8

9 | def handler():

10 acquire(?countlock)
11 count += 1

12 release(?countlock)
13 done = True

14

15 | def main():

16 trap handler()

17 acquire(?countlock)
18 count += 1

19 release(?countlock)
20 await done

21

22 | spawn main()

L ocks to the rescue?

1 | from synch import Lock, acq
2

3 | countlock = Lock()

4 | count = 0

5 | done = False

6

7 | finally count ==

8

9 | def handler():

10 acquire(?countlock)
11 count += 1

12 release(?countlock)
13 done = True

14

15 | def main():

16 trap handler()

17 acquire(?countlock)
18 count += 1

19 release(?countlock)
20 await done

21

22 | spawn main()

Summary: some execution cannot terminate
* Schedule thread TO: init()

o Line 3: Initialize countlock to False
o Line 4: Initialize count to O

o Line 5: Initialize done to False
e Schedule thread T1: main()

o Line synch/36: Set countlock to True (was False)

o Line 18: Set count to 1 (was 0)

o Line synch/39: Interrupted: jump to interrupt handler first
o Line synch/39: Interrupts disabled

o Preempted in main() --> release(?countlock) --> handler() --> acquire(?
countlock) about to execute atomic section in line synch/35

Final state (all threads have terminated or are blocked):

e Threads:
o T1: (blocked interrupts-disabled) main() --> release(?countlock) -->
handler() --> acquire(?countlock)
= about to execute atomic section in line synch/35

Enabling/disabling interrupts

1 | count = 0

2 | done = False

3

4 | finally count == 2

5

6 | def handler():

/ count += 1

8 done = True

9

10 | def main():

11 trap handler())

12 setintlevel(True)
13 count += 1)

14 setintlevel(False)
15 await done

16

17 | spawn main()

Interrupt Safe Methods

count =
2 done = False
3
4 | finally count == 2
5
6 | def increment():
14 let prior = setintlevel(True): disable interrupts
8 count += 1
9 setintlevel(prior) restore old interrupt level
10
11 | def handler():
12 increment()
13 done = True
14
15 | def main():
16 trap handler()
17 increment()
18 await done
19
20 | spawn main()

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = @

4| countlock = Lock()

5 | done = [False, False]|

6

7 | finally count == 4

8

9 | def increment():

10 let prior = setintlevel(True):
11 acquire(?countlock)
12 count += 1

13 release(?countlock)
14 setintlevel(prior)
S

16 | def handler(self):

17 increment()

18 done[self| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()

23 await done|self]

24

25 | spawn thread(0)

26 | spawn thread(1)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = @

4| countlock = Lock()

5 | done = [False, False |

6

7 | finally count == 4

8

9 | def increment():

10 let prior = setintlevel(True):
11 acquire(?countlock)

12 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self]| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()

23 await done|self] walit 1or own iInterrup
24

25 | spawn thread(0)

26 | spawn thread(1)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release

2

3 | count = @

4| countlock = Lock()

5 | done = [False, False |

6

7 | finally count == 4

8

9 | def increment(): m
10 let prior = setintlevel(True):

11 acquire(?countlock)

1174 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self]| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment() 1]]
23 await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1l)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = @

4 | countlock = Lock()

5 | done = [False, False |

6

7 | finally count == 4

8

9 | def increment():

10 let prior = setintlevel(True):

11 acquire(?countlock)

1174 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self]| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()]]
23 await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1l)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = @

4 | countlock = Lock()

5 | done = [False, False |

6

7 | finally count == 4

8

9 | def increment():

10 let prior = setintlevel(True):

11 acquire(?countlock)

1174 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self]| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()] i
23 await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1l)

Signals (virtualized interrupts) in Posix / C

Applications can have interrupts / exceptions too!

ID Name Default Action Corresponding Event
: Interrupt
2 SIGINT Terminate (e.g., ctrl-c from keyboard)
: Kill program
9 SIGKILL Terminate : :
(cannot override or ignore)
14 SIGALRM Terminate Timer signal
17 SIGCHLD lgnore Child stopped or terminated
Stop until next Stop signal from terminal
20 SHOUSULE SIGCONT (e.g. ctrl-z from keyboard)

[UNIX]

32

Sending a Signal

Kernel delivers a signal to a destination process

For one of the following reasons:
« Kernel detected a system event (e.g., div-by-zero (SIGFPE) or

termination of a child (SIGCHLD))
* Aprocessinvoked the kill system call requesting kernel to send

signal to a process

Receiving a Signal

A destination process receives a sighal when
it is forced by the kernel to react in some way
to the delivery of the signal.

Three possible ways to react:
1. Ignore the signal (do nothing)
2. Terminate process (+ optional core dump)
3. Catch the signal by executing a user-level
function called signal handler

— Like a hardware exception handler being called in

response to an asynchronous interrupt
34

Warning: very few C tunctions are
interrupt-safe

* pure system calls are interrupt-safe
* e.g.read(), write(), etc.

» functions that do not use global data are

interrupt-safe
* e.g. strlen(), strcpy(), etc.

* malloc() and free() are not interrupt-safe
* printf() is not interrupt-safe
* However, all these functions are thread-safe

36

On HW5

* You are to implement a “deque” as a bounded
buffer
* For example, using 3 slots in the buffer:

operation deque
put_left(A) [A]
put_right(B) [AB]
get _right() > B [A]
put_left(C) [CA]
put_left(D) [DCA]
get _right() 2 A [DC]

On HW5

* You are to implement a “deque” as a bounded

buffer

* For example, using 3 slots in the buffer:
operation deque | slot1 | slot2 | slot3
put_left(A) [A] A
put_right(B) [AB] A B
get _right() > B [A] A
put_left(C) [CA] A C
put_left(D) [DCA] A D C
get _right() 2 A [DC] D C

green 1s left-most

Add concurrency

» deque should be thread-safe = add lock
» operations should be blocking = add
condition variables
* what are the waiting conditions?
» don’t "over-notify”
* but better be safe than sorry

39

