
• Cornerstone of system design
• managing complexity
• Abstraction
• Interface: methods + behaviors
- Queue: Queue(), put(), get()
- Stack: Stack(), push(), pop(), post()
- R/W lock: RW(), rAcquire, rRelease, wAcquire, wRelease
• Behaviors under concurrency??
- typically want same as if all operations happen atomically

sometime between invocation and completion
- (but some abstractions might give weaker guarantees in

exchange for improved performance)

On Abstraction

1

• What is a good abstraction?
• Justice Potter Stewart: know it when I see it
• Hide implementation details
- abstraction can be implemented in many different ways
• we saw four different implementations of R/W locks already
• there are many more

- helps with maintainability
• encapsulation

• Cohesion: focused on a single task
- no unrelated methods
• Separate policy and mechanism
- when possible

• What abstractions are good?
• queue, stack, lock, R/W lock, process, thread, virtual

memory, file, …

On Abstraction, cont’d

2

• Not allowed to look under the covers
• can’t use rw->nreaders, etc.
• Only allowed to invoke the interface methods

and observe behaviors
• Your job: try to find bad behaviors
• compare against a specification
• how would you test a clock? An ATM machine?
• In general testing cannot ensure correctness
• only a correctness proof can
• testing may or may not expose a bug
• model checking helps expose bugs

Black Box Testing

3

Actors, Barriers, Interrupts
Harmony Book Chapters: 20, 21, 22

CS 4410
Operating Systems

[Robbert van Renesse]

• An actor is a type of process
• Each actor has an incoming message queue
• No other shared state
• Actors communicate by “message passing”
• placing messages on message queues
• Supports modular concurrent programs
• Actors and message queues are abstractions

Actor Model

5

• Data structure owned by a “server actor”
• Client actors can send request messages to the server and receive response

messages if necessary
• Server actor awaits requests on its queue and executes one request at a time

è
• Mutual Exclusion (one request at a time)
• Progress (requests eventually get to the head of the queue)
• Fairness (requests are handled in FCFS order)

Mutual Exclusion with Actors

6

actor 3

actor 2

actor 1

• An actor can “wait” for a condition by
waiting for a specific message
• An actor can “notify” another actor by

sending it a message

Conditional Critical Sections with Actors

7

• Organize program with a Manager Actor and a collection of
Worker Actors

• Manager Actor sends work requests to the Worker Actors
• Worker Actors send completion requests to the Manager Actor

Parallel processing with Actors

8

head worker 3

worker 2

worker 5

worker 4

worker 1

• Organize program as a chain of actors
• For example, REST/HTTP server
• Network receive actor à HTTP parser actor
à REST request actor à Application actor
à REST response actor à HTTP response
actor à Network send actor

Pipeline Parallelism with Actors

9

actor 2actor 1 actor 3

automatic flow control (when actors run at different rates)
• with bounded buffer queues

• Native support in languages such as
Scala and Erlang
• ”blocking queues” in Python, Harmony,

Java
• Actor support libraries for Java, C, …

Actors also nicely generalize to distributed
systems!

Support for actors in programming
languages

10

• Doesn’t work well for “fine-grained”
synchronization
• overhead of message passing much higher

than lock/unlock
• Sending/receiving messages just to

access a data structure leads to
significant extra code

Actor disadvantages?

11

Barrier
Synchronization

12

• Set of processes run in rounds
• Must all complete a round before starting

the next
• Popular in simulation, HPC, graph

processing, model checking…

Barrier Synchronization: the opposite
of mutual exclusion…

• Barrier(N): barrier for N threads
• bwait(): wait for everybody to catch up

Barrier abstraction

14

Test program for barriers

15

Barrier Implementation

16

State:
- Lock/Condition
- required: #threads
- left: #threads that have

not reached the barrier
- cycle: allows re-use of

barrier. Incremented
each round

Interrupt
Handling

17

• When executing in user space, a device
interrupt is invisible to the user process
- State of user process is unaffected by the device interrupt

and its subsequent handling
- This is because contexts are switched back and forth
- So, the user space context is exactly restored to the state it

was in before the interrupt

Interrupt handling

18

• However, there are also “in-context”
interrupts:
• kernel code can be interrupted
• user code can handle “signals”
à Potential for race conditions

Interrupt handling

19

“Traps” in Harmony

20

invoke handler() at
some future time
Within the same thread!

(𝑡𝑟𝑎𝑝	 ≠ 𝑠𝑝𝑎𝑤𝑛)

check count == 1 in
the final state

But what now?

21

But what now?

22

Locks to the rescue?

23

Locks to the rescue?

24

Enabling/disabling interrupts

25

disable interrupts

enable interrupts

Interrupt-Safe Methods

26

disable interrupts

restore old interrupt level

Interrupt-safe AND Thread-safe?

27

Interrupt-safe AND Thread-safe?

28

wait for own interrupt

Interrupt-safe AND Thread-safe?

29

first disable interrupts

wait for own interrupt

Interrupt-safe AND Thread-safe?

30

first disable interrupts

then acquire a lock

wait for own interrupt

Interrupt-safe AND Thread-safe?

31

first disable interrupts

then acquire a lock

why 4?

wait for own interrupt

Applications can have interrupts / exceptions too!

Signals (virtualized interrupts) in Posix / C

32[UNIX][UNIX]

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt
(e.g., ctrl-c from keyboard)

9 SIGKILL Terminate Kill program
(cannot override or ignore)

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGTSTP Stop until next
SIGCONT

Stop signal from terminal
(e.g. ctrl-z from keyboard)

Kernel delivers a signal to a destination process

For one of the following reasons:
• Kernel detected a system event (e.g., div-by-zero (SIGFPE) or

termination of a child (SIGCHLD))
• A process invoked the kill system call requesting kernel to send

signal to a process

Sending a Signal

33

A destination process receives a signal when
it is forced by the kernel to react in some way
to the delivery of the signal.

Three possible ways to react:
1. Ignore the signal (do nothing)
2. Terminate process (+ optional core dump)
3. Catch the signal by executing a user-level

function called signal handler
- Like a hardware exception handler being called in

response to an asynchronous interrupt

Receiving a Signal

34

• pure system calls are interrupt-safe
• e.g. read(), write(), etc.
• functions that do not use global data are

interrupt-safe
• e.g. strlen(), strcpy(), etc.
• malloc() and free() are not interrupt-safe
• printf() is not interrupt-safe
• However, all these functions are thread-safe

Warning: very few C functions are
interrupt-safe

36

• You are to implement a “deque” as a bounded
buffer
• For example, using 3 slots in the buffer:

On HW5

37

operation deque
put_left(A) [A]
put_right(B) [AB]
get_right() à B [A]
put_left(C) [CA]
put_left(D) [DCA]
get_right() à A [DC]

• You are to implement a “deque” as a bounded
buffer
• For example, using 3 slots in the buffer:

On HW5

38

operation deque slot 1 slot 2 slot 3
put_left(A) [A] A
put_right(B) [AB] A B
get_right() à B [A] A
put_left(C) [CA] A C
put_left(D) [DCA] A D C
get_right() à A [DC] D C

green is left-most

• deque should be thread-safe à add lock
• operations should be blocking à add

condition variables
• what are the waiting conditions?
• don’t ”over-notify”
• but better be safe than sorry

Add concurrency

39

