
Conditional
Waiting

• Concurrent Programming is Hard!
• Non-Determinism
• Non-Atomicity
• Critical Sections simplify things by

avoiding data races
-mutual exclusion
- progress
• Need both mutual exclusion and progress!
• Critical Sections use a lock
• Thread needs lock to enter the critical section
• Only one thread can get the section’s lock

Review

2

Idea: allow multiple read-only operations
to execute concurrently
• Still no data races
• In many cases, reads are much more

frequent than writes

èreader/writer lock
Either:
• multiple readers, or
• a single writer

How to get more concurrency?

3

thus not:
• a reader and a writer, nor
• multiple writers

• Thus far we’ve shown how threads can
wait for one another to avoid multiple
threads in the critical section
• Sometimes there are other reasons:
• Wait until queue is non-empty
• Wait until there are no readers (or writers)

in a reader/writer lock
• …

Conditional Waiting

4

Reader/Writer Lock Specification

5

Reader/Writer Lock Specification

6

Invariants:
• if 𝑛 readers in the R/W critical section, then 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 𝑛
• if 𝑛 writers in the R/W critical section, then 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≥ 𝑛
• 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 0 ∧ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 = 0 ∨ (𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 = 0 ∧ 0 ≤ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≤ 1)

R/W Locks: test for mutual exclusion

7

no writer, one or more readers

one writer, no readers

Cheating R/W lock implementation

8

The lock protects the
application’s critical section

Cheating R/W lock implementation

9

The lock protects the
application’s critical section

Allows only one reader to get
the lock at a time

Does not have the same
behavior as the specification
• it is missing behaviors
• no bad behaviors though

Busy Waiting Implementation

10

The lock protects nreaders
and nwriters, not the
critical section of the
application

waiting conditions

Busy Waiting Implementation

11

The lock protects nreaders
and nwriters, not the
critical section of the
application

Good: has the same behaviors as
the implemention

Bad: process is continuously
scheduled to try to get the lock
even if it’s not available

(Harmony complains about this
as well)

• A lock can have one or more condition variables
• A thread that holds the lock but wants to wait

for some condition to hold can temporarily
release the lock by waiting on some condition
variable
• Associate a condition variable with each

“waiting condition”
• reader: no writer in the critical section
• writer: no readers nor writers in the c.s.

Mesa Condition Variables

12

• When a thread that holds the lock notices
that some waiting condition is satisfied it
should notify the corresponding
condition variable

Mesa Condition Variables, cont’d

13

R/W lock with Mesa condition variables

14

r_cond: used by readers to wait on nwriters == 0
w_cond: used by writers to wait on nreaders == 0 == nwriters

R/W Lock, reader part

15

R/W Lock, reader part

16

similar to
busy waiting

R/W Lock, reader part

17

similar to
busy waiting

but need this

R/W Lock, reader part

18

similar to
busy waiting

but need this

• Always use while
• Never just if (or nothing)
• wait without while is

called a “naked wait”

R/W Lock, reader part

19

compare with busy waiting

R/W Lock, reader part

20

compare with busy waiting

R/W Lock, writer part

21

don’t forget anybody!

• wait(cv, lock)
• may only be called while holding lock
• temporarily releases lock
- but re-acquires it before resuming
• if cv not notified, may block indefinitely
- but wait() may resume ”on its own”

• notify(cv)
• no-op if nobody is waiting on cv
• otherwise wakes up at least one thread waiting on cv
• notifyAll(cv)
• wakes up all threads currently waiting on cv

Condition Variable interface

22

Busy Waiting or?

23

Busy Waiting or?

24

Busy Waiting or?

25

State unchanged while condition does
not hold. This thread only “observes”
the state until condition holds

State conditionally changes while condition does
not hold. This thread actively changes the state
until the condition hold

Busy Waiting or?

26

State unchanged while condition does
not hold. This thread only “observes”
the state until condition holds

State conditionally changes while condition does
not hold. This thread actively changes the state
until the condition hold

• Consider a timesharing setting
• Threads T1 and T2 take turns on the CPU

• switch every 100 milliseconds
• Suppose T1 has the lock and is running
• Now suppose a clock interrupt occurs, T2 starts running and

tries to acquire the lock
• Non-busy-waiting acquisition:

• T2 is put on a waiting queue and T1 resumes and runs until T1
releases the lock (which puts T2 back on the run queue)

• Busy-waiting acquisition:
• T2 keeps running (wasting CPU) until the lock is available until

the next clock interrupt
• T1 and T2 switch back and forth until T1 releases the lock

Why is busy waiting bad?

27

Busy Waiting vs Condition Variables

28

Busy Waiting Condition Variables
Use a lock and a loop Use a lock and a collection of

condition variables and a loop
Easy to write the code Notifying is tricky
Easy to understand the code Easy to understand the code
Progress property is easy Progress requires careful

consideration (both for correctness
and efficiency)

Ok-ish for true multi-core, but bad
for virtual threads

Good for both multi-core and
virtual threading

Busy Waiting: just don’t do it

29

• By the time waiter gets the lock back,
condition may no longer hold
• Given three threads, W1, R2, W3
• W1 enters as a writer
• R2 waits as a reader
• W1 leaves, notifying R2
• W3 enters as a writer
• R2 wakes up
- If R2 doesn’t check condition again, R2 and W3

would both be in the critical section

Why no naked waits? (reason 1)

30

• When notifying, be safe rather than sorry
• it’s better to notify too many threads than

too few
• in case of doubt, use notifyAll() instead of

just notify()
• But this too can lead to some threads

waking up when their condition is no
longer satisfied

Why no naked waits? (reason 2)

31

• Because you should use while around wait,
many condition variable implementations allow
“spurious wakeups”
• wait() resumes even though condition variable was

not notified

Why no naked waits? (reason 3)

32

Naked waits: just don’t do it

33

• Use separate condition variables for each
waiting condition
• Don’t use notifyAll when notify suffices
• but be safe rather than sorry
• sometimes you can even use N calls to
notify if you know at most N nodes can
continue after a waiting condition holds

Hints for reducing unneeded wakeups

34

