
Concurrent Programming:
Critical Sections and Locks

CS 4410
Operating Systems

[Robbert van Renesse]

• The ”kernel contexts” of each of the processes
share many data structures
o ready queue, wait queues, file system cache, and

much more
• Sharing is further complicated by interrupt

handlers that also access those data structures

An Operating System is a Concurrent Program

2

• What is the problem?
o no determinism, no atomicity
• What is the solution?
o some form of locks
• How to implement locks?
o there are multiple ways
• How to specify concurrent problems?
o atomic operations
• How to construct correct concurrent code?
o invariants
• How to test concurrent programs
o comparing behaviors

Synchronization Lectures Outline

3

Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like

• LOAD x
• ADD 1
• STORE x

Concurrent Programming is Hard

4

Non-Determinism

5

Non-Determinism

6

#states 2
2 components, 0 bad states
No issues

•Schedule thread T0: init()
• Line 1: Initialize shared to True
• Thread terminated

•Schedule thread T2: g()
• Line 4: Set shared to False (was True)
• Thread terminated

•Schedule thread T1: f()
• Line 3: Harmony assertion failed

2 threads updating a shared variable amount
o One thread (you) wants to decrement amount by $10K
o Other thread (IRS) wants to decrement amount by 50%

What happens when both threads are running?

Non-Atomicity

7

. . .
amount -= 10,000
. . .

. . .
amount /= 2
. . .

Memory 100,000amount

T1 T2

2 threads updating a shared variable amount
o One thread (you) wants to decrement amount by $10K
o Other thread (IRS) wants to decrement amount by 50%

What happens when both threads are running?

Non-Atomicity

8

. . .
amount -= 10,000
. . .

. . .
amount /= 2
. . .

Memory 100,000amount

T1 T2
YOU IRS

Might execute like this:
Non-Atomicity

9

Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount
r2 = r2 / 2
store r2 to amount
. . .

40,000amount

Or vice versa (T1 then T2 à 45,000)…
 either way is fine…

T1

T2

Or it might execute like this:
Non-Atomicity

10

Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount

. . .

r2 = r2 / 2
store r2 to amount
. . .

50,000amount

Lost Update!
Wrong ..and very difficult to debug

T1

T2

• 2 concurrent enqueue() operations?
• 2 concurrent dequeue() operations?

What could possibly go wrong?

Example: Races with Shared Queue

11

tail head

= timing dependent error involving shared state
o Once thread A starts, it needs to “race” to finish
o Whether race condition happens depends on

thread schedule
• Different “schedules” or “interleavings” exist
 (a schedule is a total order on machine instructions)

All possible interleavings
should be safe!

Race Conditions

12

• Number of possible interleavings is huge
• Some interleavings are good
• Some interleavings are bad
- But bad interleavings may rarely happen!
- Works 100x ≠ no race condition

• Timing dependent: small changes hide bugs
o add print statement à bug no longer seems to happen

Race Conditions are Hard to Debug

13

1. Students develop their code in Python or C
2. They test by running code many times
3. They submit their code, confident that it is correct
4. RVR tests the code with his secret and evil methods
o uses homebrew library that randomly samples from

possible interleavings (“fuzzing”)
5. Finds most submissions are broken
6. RVR unhappy, students unhappy

My experience until spring 2020

14

• Several studies show that heavily used code
implemented, reviewed, and tested by expert
programmers have lots of concurrency bugs

• Even professors who teach concurrency or write books
and papers about concurrency get it wrong sometimes

Why is that?

15

• A new concurrent programming language
o heavily based on Python syntax to reduce

learning curve for many
• A new underlying virtual machine
o quite different from any other:

it tries all possible executions of a program
until it finds a problem, if any

(this is called “model checking”)

Enter Harmony

18

Example (same as before)

19

def T1():
 amount −= 10000

def T2():
 amount /= 2

spawn T1()
spawn T2()

0 Jump 40
 1 Frame T1 ()
 2 Load amount
 3 Push 10000
 4 2-ary −
 5 Store amount
 6 Return

 7 Frame T2 ()
 8 Load amount
 9 Push 2
10 2-ary /
11 Store amount
12 Return

Harmony Machine Code

20

T1a: LOAD amount

T1b: SUB 10000

T1c: STORE amount

T2a: LOAD amount

T2b: DIV 2

T2c: STORE amount

def T1():
 amount −= 10000

def T2():
 amount /= 2

Three parts:
1. code (which never changes)
2. values of the shared variables
3. states of each of the running threads
- “contexts”
• PC, stack

State represents one vertex in the graph model

Harmony Virtual Machine State

21

Simplified model

22

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

Simplified model (ignoring main)

23

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T1a

T2a

Simplified model (ignoring main)

24

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1 loaded 100000
T2 loaded 100000

T2a

T1a

Simplified model (ignoring main)

25

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1
computed

90000

T1 loaded 100000
T2 loaded 100000

T2
computed

50000

T2a

T1a

T1b

T2b

T1 stored
90000T1c

T2a

T2c

T1a

T1b

T2b

T2a

Harmony != Python

26

Harmony Python
tries all possible executions executes just one
(…) == […] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

{ } is empty set { } is empty dictionary
few operator precedence rules ---
use parentheses often

many operator precedence rules

variables global unless declared
otherwise

depends... Sometimes must be
explicitly declared global

no return, break, continue various flow control escapes
no classes object-oriented
… …

• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

27

• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

28

No open(), re
ad(), or

or input() sta
tements

Three sources:
1. choose expressions
2. thread interleavings
3. Interrupts

Non-determinism in Harmony

29

Limitation: models must be finite!

30

init

amount =
100000

init
T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1
computed

90000

T1 loaded 100000
T2 loaded 100000

T2
computed

50000

T2a

T1a

T1b

T2b

T1 stored
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a

Limitation: models must be finite!

31

init

amount =
100000

init
T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1
computed

90000

T1 loaded 100000
T2 loaded 100000

T2
computed

50000

T2a

T1a

T1b

T2b

T1 stored
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a

• But models are allowed to have cycles.
• Executions are allowed to be unbounded!
• Harmony checks for possibility of termination

2 threads updating a shared variable amount
o One thread wants to decrement amount by $10K
o Other thread wants to decrement amount by 50%

How to “serialize” these executions?

Back to our problem…

32

. . .
amount -= 10000
. . .

. . .
amount /= 2
. . .

Memory 100000amount

T1 T2

Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: a thread can get in when there’s no other thread
Fairness: equal chances of getting into CS
 … in practice, fairness rarely guaranteed or needed

Critical Section

33

. . .
CSEnter()
amount -= 10000

CSExit()
. . .

. . .
CSEnter()
amount /= 2

CSExit()
. . .

T1 T2

Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: a thread can get in when there’s no other thread
Fairness: equal chances of getting into CS
 … in practice, fairness rarely guaranteed or needed

Critical Section

34

. . .
CSEnter()
Critical section

CSExit()
. . .

. . .
CSEnter()
Critical section

CSExit()
. . .

T1 T2

• Need both:
o either one is trivial to achieve by itself

Mutual Exclusion and Progress

35

Critical Sections in Harmony

36

• How do we check mutual exclusion?
• How do we check progress?

Specifying Critical Sections in Harmony

37

• How do we check mutual exclusion?
• How do we check progress?

Specifying Critical Sections in Harmony

38

• How do we check mutual exclusion?
• How do we check progress?

mutual exclusion

Specifying Critical Sections in Harmony

39

• How do we check mutual exclusion?
• How do we check progress?

do zero or more times

mutual exclusion

Specifying Critical Sections in Harmony

40

• How do we check mutual exclusion?
• How do we check progress?

do zero or more times

mutual exclusion

increment in_cs

Specifying Critical Sections in Harmony

41

• How do we check mutual exclusion?
• How do we check progress?

do zero or more times

mutual exclusion

increment in_cs

execute critical section

Specifying Critical Sections in Harmony

42

Progress: Harmony checks that all thread can terminate

do zero or more times

mutual exclusion

increment in_cs

execute critical section

decrement in_cs

• Spec is fine, but this is an O.S. class!
• Sounds like we need a lock
• The question is:

 How does one build a lock?

• Harmony is a concurrent
programming language. Really,
doesn’t Harmony have locks?

 You have to build them too!

Specification vs implementation

43

First attempt: a naïve lock

44

First attempt: a naïve lock

45

wait till lock is free, then take it

First attempt: a naïve lock

46

Second attempt: flags

47

Second attempt: flags

48

show intent to enter critical section

Second attempt: flags

49

wait until there’s no one else

show intent to enter critical section

Second attempt: flags

50

Third attempt: turn variable

51

Third attempt: turn variable

52

after you...

Third attempt: turn variable

53

after you...
wait for your turn

Third attempt: turn variable

54

Peterson’s Algorithm: flags & turn

55

Peterson’s Algorithm: flags & turn

56

in critical section

Peterson’s Algorithm: flags & turn

57

load and store instructions are atomic

in critical section

Peterson’s Algorithm: flags & turn

58

load and store instructions are atomic

uses flags and turn variable (3 bits total)

in critical section

Peterson’s Algorithm: flags & turn

59

load and store instructions are atomic

uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

Peterson’s Algorithm: flags & turn

60

load and store instructions are atomic

uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first

Peterson’s Algorithm: flags & turn

61

load and store instructions are atomic

uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first
wait for one of either conditions

So, we proved Peterson’s Algorithm
correct by brute force, enumerating all
possible executions. We now know that it
works.

But how does one prove it by deduction?
 so one understands why it works…

62

• Need to show that, for any execution, all
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?

63

A property that holds in all reachable states
 (and possibly in some unreachable states as well)

What is a property?

 A property is a set of states

often succinctly described using a predicate
 (all states that satisfy the predicate and no others)

What is an invariant?

64

Invariant Property

65

Reachable
States

All States

Invariant Property

Invariant Property

66

Reachable
States

All States

Invariant Property

States in which
mutual exclusion

holds

Invariant Property

67

Reachable
States

All States

Invariant Property

States in which
mutual exclusion

holds

Includes states where
mutual exclusion is

violated

• Need to show that, for any execution, all
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the

resulting list is ordered

• Let’s try proof by induction on the length of
an execution

How to prove an invariant?

68

You want to prove that some Induction
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction

69

To show that some IH holds for an
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E,

then for any possible next step s, IH also holds
in the state produced by E + [s]

Proof by induction in our case

70

• It turns out that mutual exclusion is hard
to prove directly
o it’s hard to show that, if mutual exclusion

holds in a state, it will also hold in the next
state after making one execution step

o not a good basis for induction
• Need a stronger invariant that implies

mutual exclusion

But there’s a problem

71

Peterson’s Algorithm: flags & turn

72

Candidate invariant to prove

• Assumes that LOAD and STORE
instructions are atomic
• Not guaranteed on a real processor
• Also not guaranteed by C, Java, Python,

…

Peterson’s Reconsidered

99

Loads and Stores are atomic

• Suppose x is a 64-bit integer
• Suppose you have a 32-bit CPU
• Then ”x = 0” requires 2 stores
o because x occupies 2 words
• Similarly, reading x requires 2 loads
• Same is true is x is a 32-bit integer but x is

not aligned on a word boundary
o Writing to x would require two LOAD and

two STORE operations on memory!

Non-atomic load/store example

100

• Hardware may also cause problems
o e.g., buffering of writes to memory for

improved performance
• Because of all these issues, programming

languages will typically leave the
outcome of concurrent operations to a
variable undefined
o if at least one of those operations is a store

Concurrent writing

101

• When two threads access the same variable
• And at least one is a STORE
• Then the semantics of the outcome is undefined

Data Race

102

• sequential turn, flags
• ensures that loads/stores are atomic
• that is, concurrent operations appear to be

executed sequentially
• This is called “sequential consistency”
For example
• Shared variable x contains 3
• Thread A stores 4 into x
• Thread B loads x
o With atomic load/store operations, B will read either 3 or 4
o With normal operations, the value that B reads is undefined

Harmony “sequential” statement

103

• Java has a similar notion:
o volatile int x ;
• Not to be confused with the same keyword in C

and C++ though…
• Loading/storing volatile (sequentially

consistent) variables is more expensive than
loading/storing ordinary variables
o because it restricts CPU and/or compiler

optimizations

Sequential consistency

104

• Mutual Exclusion can be implemented
with atomic LOAD and STORE
instructions to access shared memory
o hardware supports such instructions but

they are very expensive
• Peterson’s can be generalized to >2

processes
o even more STOREs and LOADs

Too inefficient in practice

Peterson’s Reconsidered Again

105

• Machine instructions that do multiple shared
memory accesses atomically

• e.g., TestAndSet s
o sets s to True
o returns old value of s
• i.e., does the following:
- LOAD r0, s # load variable s into register r0
- STORE s, 1 # store TRUE in variable s

• Entire operation is atomic
o other machine instructions cannot interleave

Enter Interlock Instructions

106

• If x is a shared variable, ?x is the address of x
• If p is a variable and p contains ?x, then we say

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

107

• If x is a shared variable, ?x is the address of x
• If p is a variable and p contains ?x, then we say

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

108

Where?
There!

Specifying a lock

109

Specifying a lock

110

returns initial value

acquires lock atomically once available

releases lock atomically

Critical Section using a lock

111

• We say that a lock is held or owned by a thread
o implicit “ghost” state (not an actual variable)
o nonetheless can be used for reasoning

• Two important invariants:
1. 𝑇@𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑇 holds the lock
2. at most one thread can hold the lock

Many (most?) systems do not keep track of who
holds a particular lock, if anybody

“Ghost” state

112

Lock implementation (“spinlock”)

113

specification of the CPU’s
test_and_set functionality

specification of the CPU’s
atomic store functionality

lock implementation

Specification vs Implementation

114

Specification: describes what an abstraction does
Implementation: describes how

fine line

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing

115

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is

trying to obtain a spinlock
o when there is pre-emption?

Spinlocks and Time Sharing

116

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is

trying to obtain a spinlock
o when there is pre-emption?
- can cause delays and waste of CPU cycles while

a thread is trying to obtain a spinlock

Spinlocks and Time Sharing

117

• Harmony allows contexts to be saved
and restored (i.e., context switch)

o r = stop p
- stops the current thread and stores context in !p
o go (!p) r
- adds a thread with the given context to the bag

of threads. Thread resumes from stop
expression, returning r

Context switching in Harmony

118

Locks using stop and go

119

.acquired: boolean

.suspended: queue of contexts

Locks using stop and go

120

.acquired: boolean

.suspended: queue of contexts

put thread on wait queue

resume first thread on wait queue

Locks using stop and go

121

Similar to a Linux “futex”: if there is no contention
(hopefully the common case) acquire() and release() are
cheap. If there is contention, they involve a context switch.

• “synch” is the (default) module that has
the specification of a lock
• “synchS” is the module that has the
stop/go version of lock
• you can select which one you want:

 harmony -m synch=synchS x.hny

• “synch” tends to be faster than “synchS”
- smaller state graph

Choosing modules in Harmony

122

Atomic section ≠ Critical Section

123

Atomic Section Critical Section
only one thread can execute multiple threads can execute

concurrently, just not within a
critical section

rare programming language
paradigm

ubiquitous: locks available in
many mainstream
programming languages

good for specifying interlock
instructions

good for implementing
concurrent data structures

Harmony demo:

124

Demo 1:
data race Demo 2: no data race

Demo 3: same
semantics as
Demo 2:

Harmony demo

125

Demo 4: still a data race

Demo 5: data race
freedom does not imply
no race conditions

Harmony demo

126

Demo 6: spec of
what we want

Demo 7: implementation
using critical section

Harmony demo

127

Demo 8: broken implementation using two critical sections

• A Data Race occurs when two threads try
to access the same variable and at least
one access is non-atomic and at least
one access is an update.
o The outcome of the operations may be

undefined and almost always is a bug
• A Race Condition occurs when the

correctness of the program depends on
ordering of variable access
o Race Condition does not imply Data Race

Summary

128

• A Critical Section consists of one or more
regions of code in which at most thread
can execute at a time
o usually protected by a lock
o not the same as atomic because threads

can continue to execute other regions of the
code

• Beware of code with multiple critical
sections
o e.g., code that uses multiple locks

Summary, cont’d

129

• Each data structure maintains some consistency
property
o e.g., in a linked list, there is a head, a tail, a list of

nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

Data Structure consistency

130

• Each data structure maintains some consistency
property
o e.g., in a linked list, there is a head, a tail, a list of

nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

• You can assume the property holds right after
obtaining the lock
• You must make sure the property holds again

right before releasing the lock

Consistency using locks

131

• Each data structure maintains some consistency
property
• Invariant:
o lock not held ⟹ data structure consistent
• Or equivalently:
o data structure inconsistent ⟹	lock held

Consistency using locks

132

• q = queue.Queue(): initialize a new queue
• queue.put(q, v): add v to the tail of queue q
• v = queue.get(q): returns None if q is empty or

v if v was at the head of the queue

Building a Concurrent Queue

133

Specifying a concurrent queue

134

Example of using a queue

135

enqueue v onto !q

dequeue and check

create queue

Specifying a concurrent queue

136

Not a good implementation because
• operations are O(n)
• code uses atomically

Queue implementation, v1

137

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Queue implementation, v1

138

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation

Queue implementation, v1

139

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

empty queue

Queue implementation, v1

140

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

allocate node

Queue implementation, v1

141

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

Queue implementation, v1

142

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff

Queue implementation, v1

143

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

release lock

Queue implementation, v1

144

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Queue implementation, v1

145

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff

Queue implementation, v1

146

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

malloc’d memory must be
explicitly released (cf. C)

• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

147

• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

148
Good performance is critical!

Concurrent queue v2: 2 locks

149

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

Concurrent queue v2: 2 locks

150

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

atomically q->tail->next = node

Concurrent queue v2: 2 locks

151

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

Concurrent queue v2: 2 locks

152

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent
enqueue and dequeue operations!
è more concurrency è faster

Concurrent queue v2: 2 locks

153

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent
enqueue and dequeue operations!
è more concurrency è faster

Needs to avoid data race on
dummyànext when queue is empty

• The two-lock queue is an example of a data
structure with finer-grained locking
• A global lock is easy, but limits concurrency
• Fine-grained or local locking can improve

concurrency, but tends to be trickier to get right

Global vs. Local Locks

154

Sorted Linked List with Lock per Node

155

.value

.next
.value
.next

∞
.next None

−∞
.next

empty list

• −∞	represented by (-1, None)
• v represented by (0, v)
• ∞	represented by (1, None)
Note that ∀v: (-1, None) < (0, v) < (1, None)
 (lexicographical ordering)

Sorted Linked List with Lock per Node

156

.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	

Sorted Linked List with Lock per Node

157

.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	

Hand-over hand locking
(good for data structures
without cycles)

Sorted Linked List with Lock per Node

158

Sorted Linked List with Lock per Node

159

Multiple threads can access the
list simultaneously, but they
can’t overtake one another

Systematic Testing

160

• Sequential case
o try all “sequences” of 1 operation
- put or get (in case of queue)
o try all sequences of 2 operations
- put+put, put+get, get+put, get+get, …
o try all sequences of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test

against implementation with running test
against the sequential specification

Systematic Testing

161

• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if an interleaving is

correct?
o compare “behaviors” of running test

against concurrent implementation with
running test against the concurrent
specification

Systematic Testing

162

Life of an atomic operation

163

process invokes
operation

process resumes
with result

operation happens
atomically

TIME

Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

Concurrency and Overlap

164

Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

We’ve all seen this happen. It’s a matter of
how things get scheduled!

Concurrency and Overlap

165

• One operation: order a burger
o result: a burger (at some later time)
• Semantics: the burger manifests itself

atomically sometime during the operation
• Atomically: no two manifestations overlap
• It’s easier to specify something when you don’t

have to worry about overlap
o i.e., you can simply give a sequential specification
• Allows many implementations

Specification

166

• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X receives burger

Implementation?

167

1

2

X:

Y:

• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X receives burger

Implementation?

168

1

2

X:

Y:

• can’t happen if Y orders burger after X receives burger
• but if operations overlap, any ordering can happen…

Correct Behaviors

169

put(1)

get() à ?

TIME

(1)

Correct Behaviors

170

put(1)

get() à 1

TIME

(1)

Correct Behaviors

171

put(1)

get() à 1

TIME

put(1)

get() à ?

(1)

(2)

Correct Behaviors

172

put(1)

get() à 1

TIME

put(1)

get() à None

(1)

(2)

Correct Behaviors

173

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à ???

(1)

(2)

(3)

Correct Behaviors

174

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à None

(1)

(2)

(3)

Correct Behaviors

175

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à 1

(1)

(2)

(3)

• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if an interleaving is

correct?
o compare “behaviors” of running test

against concurrent implementation with
running test against the concurrent
specification

Testing Concurrent Objects

176

Concurrent queue test program

177

Behavior (NOPS=2: 1 get, 1 put)

178

$ harmony -c NOPS=2 -o spec.png code/queue_btest1.hny

• The first command outputs the behavior of
running the test program against the
specification in file queue4.hfa
• The second command runs the test program

against the implementation and checks if its
behavior matches that stored in queue4.hfa

Testing: comparing behaviors

179

