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• The ”kernel contexts” of each of the processes 
share many data structures
o ready queue, wait queues, file system cache, and 

much more
• Sharing is further complicated by interrupt 

handlers that also access those data structures

An Operating System is a Concurrent Program
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• What is the problem?
o no determinism, no atomicity
• What is the solution?
o some form of locks
• How to implement locks?
o there are multiple ways
• How to specify concurrent problems?
o atomic operations
• How to construct correct concurrent code?
o invariants
• How to test concurrent programs
o comparing behaviors

Synchronization Lectures Outline
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Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like

• LOAD x
• ADD 1
• STORE x

Concurrent Programming is Hard
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Non-Determinism
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Non-Determinism
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#states 2
2 components, 0 bad states
No issues

•Schedule thread T0: init()
• Line 1: Initialize shared to True
• Thread terminated

•Schedule thread T2: g()
• Line 4: Set shared to False (was True)
• Thread terminated

•Schedule thread T1: f()
• Line 3: Harmony assertion failed



2 threads updating a shared variable amount
o One thread (you) wants to decrement amount by $10K
o Other thread (IRS) wants to decrement amount by 50%

What happens when both threads are running?

Non-Atomicity
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. . .
amount -= 10,000
. . .

. . .
amount /= 2
. . .

Memory 100,000amount

T1 T2



2 threads updating a shared variable amount
o One thread (you) wants to decrement amount by $10K
o Other thread (IRS) wants to decrement amount by 50%

What happens when both threads are running?

Non-Atomicity
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. . .
amount -= 10,000
. . .

. . .
amount /= 2
. . .

Memory 100,000amount

T1 T2
YOU IRS



Might execute like this:
Non-Atomicity
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Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount
r2 = r2 / 2
store r2 to amount
. . .

40,000amount

Or vice versa (T1 then T2 à 45,000)…
   either way is fine…

T1

T2



Or it might execute like this:
Non-Atomicity
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Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount

. . .

r2 = r2 / 2
store r2 to amount
. . .

50,000amount

Lost Update!
Wrong ..and very difficult to debug

T1

T2



• 2 concurrent enqueue() operations?
• 2 concurrent dequeue() operations?

What could possibly go wrong?

Example: Races with Shared Queue
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tail head



= timing dependent error involving shared state 
o Once thread A starts, it needs to “race” to finish
o Whether race condition happens depends on 

thread schedule
•  Different “schedules” or “interleavings” exist
    (a schedule is a total order on machine instructions)

All possible interleavings
should be safe!

Race Conditions
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• Number of possible interleavings is huge
• Some interleavings are good
• Some interleavings are bad
-   But bad interleavings may rarely happen!
-   Works 100x ≠ no race condition

• Timing dependent: small changes hide bugs
o add print statement à bug no longer seems to happen

Race Conditions are Hard to Debug
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1. Students develop their code in Python or C
2. They test by running code many times
3. They submit their code, confident that it is correct
4. RVR tests the code with his secret and evil methods
o       uses homebrew library that randomly samples from 

possible interleavings (“fuzzing”)
5. Finds most submissions are broken
6. RVR unhappy, students unhappy

My experience until spring 2020
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• Several studies show that heavily used code 
implemented, reviewed, and tested by expert 
programmers have lots of concurrency bugs

• Even professors who teach concurrency or write books 
and papers about concurrency get it wrong sometimes

Why is that?
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• A new concurrent programming language
o heavily based on Python syntax to reduce 

learning curve for many
• A new underlying virtual machine
o quite different from any other:

it tries all possible executions of a program
until it finds a problem, if any

(this is called “model checking”)

Enter Harmony
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Example (same as before)
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def T1():
  amount −= 10000
 
def T2():
  amount /= 2

spawn T1()
spawn T2()



0  Jump 40
 1  Frame T1 ()
 2  Load amount
 3  Push 10000
 4  2-ary −
 5  Store amount
 6  Return

  7 Frame T2 ()
  8 Load amount
  9 Push 2
10 2-ary /
11 Store amount
12 Return

Harmony Machine Code
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T1a: LOAD amount

T1b: SUB 10000

T1c: STORE amount

T2a: LOAD amount

T2b: DIV 2

T2c: STORE amount

def T1():
  amount −= 10000
 

def T2():
  amount /= 2
 



Three parts:
1. code (which never changes)
2. values of the shared variables
3. states of each of the running threads
- “contexts”
• PC, stack

State represents one vertex in the graph model

Harmony Virtual Machine State
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Simplified model
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_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount



Simplified model (ignoring main)
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_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded 
100000

T2 loaded 
100000

T1a

T2a



Simplified model (ignoring main)
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_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 loaded 100000
T2 loaded 100000

T2a

T1a



Simplified model (ignoring main)
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_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 
computed 

90000

T1 loaded 100000
T2 loaded 100000

T2 
computed 

50000

T2a

T1a

T1b

T2b

T1 stored 
90000T1c

T2a

T2c

T1a

T1b

T2b

T2a



Harmony != Python
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Harmony Python
tries all possible executions executes just one
( … ) == [ … ] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

{ } is empty set { } is empty dictionary
few operator precedence rules --- 
use parentheses often

many operator precedence rules

variables global unless declared 
otherwise

depends... Sometimes must be 
explicitly declared global

no return, break, continue various flow control escapes
no classes object-oriented
… …



• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

27



• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?
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No open(), re
ad(), or

or input() sta
tements



Three sources:
1.  choose expressions
2. thread interleavings
3. Interrupts

Non-determinism in Harmony
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Limitation: models must be finite!
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_init_

amount = 
100000

init
T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 
computed 

90000

T1 loaded 100000
T2 loaded 100000

T2 
computed 

50000

T2a

T1a

T1b

T2b

T1 stored 
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a



Limitation: models must be finite!
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_init_

amount = 
100000

init
T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 
computed 

90000

T1 loaded 100000
T2 loaded 100000

T2 
computed 

50000

T2a

T1a

T1b

T2b

T1 stored 
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a

• But models are allowed to have cycles.
• Executions are allowed to be unbounded!
• Harmony checks for possibility of termination



2 threads updating a shared variable amount
o One thread wants to decrement amount by $10K
o Other thread wants to decrement amount by 50%

How to “serialize” these executions?

Back to our problem…
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. . .
amount -= 10000
. . .

. . .
amount /= 2
. . .

Memory 100000amount

T1 T2



Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: a thread can get in when there’s no other thread
Fairness: equal chances of getting into CS
       … in practice, fairness rarely guaranteed or needed

Critical Section
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. . .
CSEnter()
amount -= 10000

CSExit()
. . .

. . .
CSEnter()
amount /= 2

CSExit()
. . .

T1 T2



Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: a thread can get in when there’s no other thread
Fairness: equal chances of getting into CS
       … in practice, fairness rarely guaranteed or needed

Critical Section
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. . .
CSEnter()
Critical section

CSExit()
. . .

. . .
CSEnter()
Critical section

CSExit()
. . .

T1 T2



• Need both:
o either one is trivial to achieve by itself

Mutual Exclusion and Progress
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Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

mutual exclusion



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

do zero or more times

mutual exclusion



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

do zero or more times

mutual exclusion

increment in_cs



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

do zero or more times

mutual exclusion

increment in_cs

execute critical section



Specifying Critical Sections in Harmony
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Progress: Harmony checks that all thread can terminate

do zero or more times

mutual exclusion

increment in_cs

execute critical section

decrement in_cs



• Spec is fine, but this is an O.S. class!
• Sounds like we need a lock
• The question is:

   How does one build a lock?

• Harmony is a concurrent 
programming language.  Really, 
doesn’t Harmony have locks?

   You have to build them too!

Specification vs implementation
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First attempt: a naïve lock
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First attempt: a naïve lock
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wait till lock is free, then take it



First attempt: a naïve lock
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Second attempt: flags
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Second attempt: flags
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show intent to enter critical section



Second attempt: flags

49

wait until there’s no one else

show intent to enter critical section



Second attempt: flags
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Third attempt: turn variable
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Third attempt: turn variable

52

after you...



Third attempt: turn variable
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after you...
wait for your turn



Third attempt: turn variable
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Peterson’s Algorithm: flags & turn
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Peterson’s Algorithm: flags & turn
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in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic

in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic

uses flags and turn variable (3 bits total)

in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic

uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic

uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic

uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first
wait for one of either conditions



So, we proved Peterson’s Algorithm 
correct by brute force, enumerating all 
possible executions.  We now know that it 
works.

But how does one prove it by deduction?
 so one understands why it works…
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• Need to show that, for any execution, all 
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?
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A property that holds in all reachable states
 (and possibly in some unreachable states as well)

What is a property?

 A property is a set of states

often succinctly described using a predicate
 (all states that satisfy the predicate and no others)

What is an invariant?
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Invariant Property
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Reachable 
States

All States

Invariant Property



Invariant Property
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Reachable 
States

All States

Invariant Property

States in which 
mutual exclusion 

holds



Invariant Property
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Reachable 
States

All States

Invariant Property

States in which 
mutual exclusion 

holds

Includes states where 
mutual exclusion is 

violated



• Need to show that, for any execution, all 
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the 

resulting list is ordered

• Let’s try proof by induction on the length of 
an execution

How to prove an invariant?
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You want to prove that some Induction 
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction

69



To show that some IH holds for an 
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E, 

then for any possible next step s,  IH also holds 
in the state produced by E + [s]

Proof by induction in our case

70



• It turns out that mutual exclusion is hard 
to prove directly
o it’s hard to show that, if mutual exclusion 

holds in a state, it will also hold in the next 
state after making one execution step

o not a good basis for induction
• Need a stronger invariant that implies 

mutual exclusion

But there’s a problem
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Peterson’s Algorithm: flags & turn

72

Candidate invariant to prove



• Assumes that LOAD and STORE 
instructions are atomic
• Not guaranteed on a real processor
• Also not guaranteed by C, Java, Python, 

…

Peterson’s Reconsidered
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Loads and Stores are atomic



• Suppose x is a 64-bit integer
• Suppose you have a 32-bit CPU
• Then ”x = 0” requires 2 stores
o because x occupies 2 words
• Similarly, reading x requires 2 loads
• Same is true is x is a 32-bit integer but x is 

not aligned on a word boundary
o Writing to x would require two LOAD and 

two STORE operations on memory!

Non-atomic load/store example
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• Hardware may also cause problems
o e.g., buffering of writes to memory for 

improved performance
• Because of all these issues, programming 

languages will typically leave the 
outcome of concurrent operations to a 
variable undefined
o if at least one of those operations is a store

Concurrent writing

101



• When two threads access the same variable
• And at least one is a STORE
• Then the semantics of the outcome is undefined

Data Race
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• sequential turn, flags
• ensures that loads/stores are atomic
• that is, concurrent operations appear to be 

executed sequentially
• This is called “sequential consistency”
For example
• Shared variable x contains 3
• Thread A stores 4 into x
• Thread B loads x
o With atomic load/store operations, B will read either 3 or 4
o With normal operations, the value that B reads is undefined

Harmony “sequential” statement
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• Java has a similar notion:
o volatile int x ;
• Not to be confused with the same keyword in C 

and C++ though…
• Loading/storing volatile (sequentially 

consistent) variables is more expensive than 
loading/storing ordinary variables
o because it restricts CPU and/or compiler 

optimizations

Sequential consistency
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• Mutual Exclusion can be implemented 
with atomic LOAD and STORE 
instructions to access shared memory
o hardware supports such instructions but 

they are very expensive
• Peterson’s can be generalized to >2 

processes
o even more STOREs and LOADs

Too inefficient in practice

Peterson’s Reconsidered Again
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• Machine instructions that do multiple shared 
memory accesses atomically

• e.g., TestAndSet s
o sets s to True
o returns old value of s
• i.e., does the following:
- LOAD r0, s  # load variable s into register r0
- STORE s, 1  # store TRUE in variable s

• Entire operation is atomic
o other machine instructions cannot interleave

Enter Interlock Instructions
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• If x is a shared variable, ?x is the address of x
• If p is a variable and p contains ?x, then we say 

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

107



• If x is a shared variable, ?x is the address of x
• If p is a variable and p contains ?x, then we say 

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers
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Where?
There!



Specifying a lock
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Specifying a lock

110

returns initial value

acquires lock atomically once available

releases lock atomically



Critical Section using a lock
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• We say that a lock is held or owned by a thread
o implicit “ghost” state (not an actual variable)
o nonetheless can be used for reasoning

• Two important invariants: 
1.  𝑇@𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑇 holds the lock
2. at most one thread can hold the lock

Many (most?) systems do not keep track of who 
holds a particular lock, if anybody

“Ghost” state
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Lock implementation (“spinlock”)
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specification of the CPU’s
test_and_set functionality

specification of the CPU’s
atomic store functionality

lock implementation



Specification vs Implementation
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Specification: describes what an abstraction does
Implementation: describes how

fine line



• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads time-shared on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing
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• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is 

trying to obtain a spinlock
o when there is pre-emption?

Spinlocks and Time Sharing

116



• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is 

trying to obtain a spinlock
o when there is pre-emption?
- can cause delays and waste of CPU cycles while 

a thread is trying to obtain a spinlock

Spinlocks and Time Sharing

117



• Harmony allows contexts to be saved 
and restored (i.e., context switch)

o r = stop p
- stops the current thread and stores context in !p
o go (!p) r
- adds a thread with the given context to the bag 

of threads.  Thread resumes from stop 
expression, returning r

Context switching in Harmony
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Locks using stop and go
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.acquired: boolean

.suspended: queue of contexts



Locks using stop and go
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.acquired: boolean

.suspended: queue of contexts

put thread on wait queue

resume first thread on wait queue



Locks using stop and go

121

Similar to a Linux “futex”: if there is no contention 
(hopefully the common case) acquire() and release() are 
cheap.  If there is contention, they involve a context switch.



• “synch” is the (default) module that has 
the specification of a lock
• “synchS” is the module that has the 
stop/go version of lock
• you can select which one you want:

  harmony -m synch=synchS x.hny

• “synch” tends to be faster than “synchS”
- smaller state graph 

Choosing modules in Harmony
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Atomic section ≠ Critical Section
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Atomic Section Critical Section
only one thread can execute multiple threads can execute 

concurrently, just not within a 
critical section

rare programming language 
paradigm

ubiquitous: locks available in 
many mainstream 
programming languages

good for specifying interlock 
instructions

good for implementing 
concurrent data structures



Harmony demo:
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Demo 1: 
data race Demo 2: no data race

Demo 3: same 
semantics as 
Demo 2:



Harmony demo
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Demo 4: still a data race

Demo 5: data race 
freedom does not imply 
no race conditions



Harmony demo
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Demo 6: spec of 
what we want

Demo 7: implementation 
using critical section



Harmony demo
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Demo 8: broken implementation using two critical sections



• A Data Race occurs when two threads try 
to access the same variable and at least 
one access is non-atomic and at least 
one access is an update.
o The outcome of the operations may be 

undefined and almost always is a bug
• A Race Condition occurs when the 

correctness of the program depends on 
ordering of variable access
o Race Condition does not imply Data Race

Summary
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• A Critical Section consists of one or more 
regions of code in which at most thread 
can execute at a time
o usually protected by a lock
o not the same as atomic because threads 

can continue to execute other regions of the 
code

• Beware of code with multiple critical 
sections
o e.g., code that uses multiple locks

Summary, cont’d
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• Each data structure maintains some consistency 
property
o e.g., in a linked list, there is a head, a tail, a list of 

nodes such that head points to first node, tail points 
to the last node, and each node points to the next 
one except the last, which points to None.  However, 
if the list is empty, head and tail are both None.

Data Structure consistency
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• Each data structure maintains some consistency 
property
o e.g., in a linked list, there is a head, a tail, a list of 

nodes such that head points to first node, tail points 
to the last node, and each node points to the next 
one except the last, which points to None.  However, 
if the list is empty, head and tail are both None.

• You can assume the property holds right after 
obtaining the lock
• You must make sure the property holds again 

right before releasing the lock

Consistency using locks
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• Each data structure maintains some consistency 
property
• Invariant:
o lock not held ⟹ data structure consistent
• Or equivalently:
o data structure inconsistent ⟹	lock held

Consistency using locks
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• q = queue.Queue(): initialize a new queue
• queue.put(q, v): add v to the tail of queue q
• v = queue.get(q): returns None if q is empty or 

v if v was at the head of the queue

Building a Concurrent Queue

133



Specifying a concurrent queue

134



Example of using a queue
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enqueue v onto !q

dequeue and check

create queue



Specifying a concurrent queue
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Not a good implementation because
• operations are O(n)
• code uses atomically



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None



Queue implementation, v1

138

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

empty queue



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

allocate node



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

release lock



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

malloc’d memory must be 
explicitly released (cf. C)



• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

147



• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?
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Good performance is critical!



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

atomically q->tail->next = node 



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent 
enqueue and dequeue operations! 
è more concurrency è faster



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent 
enqueue and dequeue operations! 
è more concurrency è faster

Needs to avoid data race on 
dummyànext when queue is empty



• The two-lock queue is an example of a data 
structure with finer-grained locking
• A global lock is easy, but limits concurrency
• Fine-grained or local locking can improve 

concurrency, but tends to be trickier to get right

Global vs. Local Locks

154



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

empty list

• −∞	represented by (-1, None)
• v represented by (0, v)
• ∞	represented by (1, None)
Note that ∀v: (-1, None) < (0, v) < (1, None)
       (lexicographical ordering)



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two 
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two 
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	

Hand-over hand locking
(good for data structures 
without cycles)



Sorted Linked List with Lock per Node

158



Sorted Linked List with Lock per Node
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Multiple threads can access the 
list simultaneously, but they 
can’t overtake one another



Systematic Testing

160



• Sequential case
o try all “sequences” of 1 operation
- put or get (in case of queue)
o try all sequences of 2 operations
- put+put, put+get, get+put, get+get, …
o try all sequences of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test 

against implementation with running test 
against the sequential specification

Systematic Testing

161



• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if an interleaving is 

correct?
o compare “behaviors” of running test 

against concurrent implementation with 
running test against the concurrent 
specification

Systematic Testing

162



Life of an atomic operation

163

process invokes 
operation

process resumes 
with result

operation happens 
atomically

TIME



Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

Concurrency and Overlap

164



Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

We’ve all seen this happen.  It’s a matter of 
how things get scheduled!

Concurrency and Overlap

165



• One operation: order a burger
o result: a burger (at some later time)
• Semantics: the burger manifests itself 

atomically sometime during the operation
• Atomically: no two manifestations overlap
• It’s easier to specify something when you don’t 

have to worry about overlap
o i.e., you can simply give a sequential specification
• Allows many implementations

Specification

166



• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs 

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X  receives burger

Implementation?

167

1

2

X:

Y:



• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs 

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X  receives burger

Implementation?

168

1

2

X:

Y:

• can’t happen if Y orders burger after X receives burger
• but if operations overlap, any ordering can happen… 



Correct Behaviors
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put(1)

get() à ?

TIME

(1)



Correct Behaviors
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put(1)

get() à 1

TIME

(1)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à ?

(1)

(2)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

(1)

(2)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à ???

(1)

(2)

(3)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à None

(1)

(2)

(3)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à 1

(1)

(2)

(3)



• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if an interleaving is 

correct?
o compare “behaviors” of running test 

against concurrent implementation with 
running test against the concurrent 
specification

Testing Concurrent Objects

176



Concurrent queue test program

177



Behavior (NOPS=2: 1 get, 1 put)

178

$ harmony -c NOPS=2 -o spec.png code/queue_btest1.hny



• The first command outputs the behavior of 
running the test program against the 
specification in file queue4.hfa
• The second command runs the test program 

against the implementation and checks if its 
behavior matches that stored in queue4.hfa

Testing: comparing behaviors

179


