
Short History of
Operating Systems

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George,
F. B. Schneider, E. G. Sirer, R. Van Renesse]



PHASE 1 (1945 – 1975)

COMPUTERS EXPENSIVE, HUMANS CHEAP



Early Era (1945 – 1955):

• First computer: ENIAC
– UPenn, 30 tons
– Vacuum tubes
– card reader/puncher
– 5000 additions/second
– 100-word memory added in 1953

• Single User Systems
– one app, then reboot

• “O.S” = loader + libraries
• Problem: Low utilization



Batch Processing (1955 – 1960):

• First Operating System: GM-NAA-I/O
– General Motors research division
– North American Aviation
– Input/Output

• Written for IBM 704 computer
– 10 tons
– 40KIPS (40,000 instructions / second)
– 4K word memory (about 18 Kbyte)



Batch Processing
• O.S = loader + libraries + sequencer
• Problem: CPU unused during I/O

Tape

Input

PrinterOperating System

“System Software”

User Program

User Data

Output

Compute

Tape

Card 
Reader



Time-Sharing (1960 –):
• Multiplex CPU
• CTSS first time-sharing O.S.
– Compatible Time-Sharing System
– MIT Computation Center
– predecessor of all modern O.S.’s

• IBM 7090 computer
– (see Hidden Figures!!!)

• transistors!
• 200 KIPS (68 KFLOPS)
• 32K word memory

Fernando J. Corbató (1926-2019)



Time-Sharing + Security (1965 –):
• Multics (MIT)
– security rings

• GE-645 computer
– 435 KIPS
– hw-protected virtual 

memory

• Multics predecessor of
– Unix (1970)
– Linux (1990)
– Android (2008)



PHASE 2 (1975 – TODAY)

COMPUTERS CHEAP, HUMANS EXPENSIVE



Personal Computers (1975 –):

• 1975: IBM 5100 first “portable” computer
– 55 pounds…
– ICs

• 1977: RadioShack/Tandy TRS-80
– first “home” desktop

• 1981: Osborne 1 first “laptop”
– 24.5 pounds, 5’’ display



Modern Era (1990 –)

• Ubiquitous Computing / Internet-of-Things
– Mark Weiser, 1988-ish

• Personal Computing
– PDA (“PalmPilot”) introduced in 1992
– #computers / human >> 1

• Cloud Computing
– Amazon EC2, 2006



Today’s “winners” (by market share)

• Google Android (2006, based on Linux)
– Android phones, tablets

• Microsoft Windows NT (1993)
– PC desktops, laptops, and servers

• Apple iOS (2007)
– iPhones, iPads, …

• Apple Mac OS X (2001)
– Apple Mac desktops and laptops

• Linux (1990)
– Servers, laptops, IoT
– servers only a fraction of total computer market



PHASE 3 (TODAY – )

COMPUTERS CHEAP, HUMANS ???



Anatomy of a Computer
(simplified)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]



ADDRESS BUS

DATA BUS

CONTROL BUS

CPU MEMORY DEVICE
REGISTERS

Architecture Diagram



“Bus”

• Collection of “lines” (wires)
• Control bus:  Load/Store/Interrupt/…
• Data bus: x lines (wires) à word is x bits
– e.g: 32 lines: word is 32 bits (4 bytes)

• Address bus: y lines à address is y bits
– process can address at most 2y bytes



Logical View of CPU and Memory

CPU

Registers
(pc, sp, r0, r1, …)

ALU

Memory

STORE

LOAD

• memory is an array of bytes
• address is an index into the array

00000000

FFFFFFFF



Memory “segments”
Memory

00000000

FFFFFFFF

STACK

TEXT
(code)

DATA

HEAP

UNUSED

Stack Pointer SP

Program Counter PC
Instruction Pointer IP

• The stack is usually word-aligned
• i.e., push and pop words



Stack before and after Push
Memory

00000000

FFFFFFFF

STACK

SP

Memory

00000000

FFFFFFFF

STACK

SP
word



Stack before and after Push
Memory

00000000

FFFFFFFF

STACK

SP

Memory

00000000

FFFFFFFF

STACK

SP
word

FFFF1234

FFFF1230



Stack before and after Pop
Memory

00000000

FFFFFFFF

STACK

SP

Memory

00000000

FFFFFFFF

STACK

SP
word



Stack before and after Pop
Memory

00000000

FFFFFFFF

STACK

SP

Memory

00000000

FFFFFFFF

STACK

SP
word

FFFF1000

????????



Stack before and after Pop
Memory

00000000

FFFFFFFF

STACK

SP

Memory

00000000

FFFFFFFF

STACK

SP
word

FFFF1000

FFFF1004



Control Flow and the Stack

• call f:
– saves return address (where??)
– sets program counter to address of f
– f will typically start with saving registers that it 

wants to use and end with restoring them

• return
– restores return address (from where??)



Return Address

• x86: return address pushed onto stack
– allows for nested calls automatically

• RISC-V, ARM: saved in special register
– caller is responsible for saving and restoring the 

register if needed, which it usually does on the 
stack

Net result is the similar for nested calls!



Arguments and Return values

• Arguments are usually passed in registers for 
efficiency

• If there are too many arguments, rest is 
passed by pushing them onto the stack

• The return value is usually stored in a 
dedicated register



Control Flow
int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for 
main()

PC/IP

SP



Control Flow
int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for 
main()

stack frame for f()

PC/IP SP



Control Flow
int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for 
main()

stack frame for f()

PC/IP SP

(overflow) arguments

return address

local variables

saved registers

saved FP (main)

scratch space



Control Flow
int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for 
main()

stack frame for f()

stack frame for g()

PC/IP

SP

(overflow) arguments

return address

local variables

saved registers

saved FP (main)

scratch space



Control Flow
int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for 
main()

stack frame for f()

PC/IP

SP

(overflow) arguments

return address

local variables

saved registers

saved FP (main)

scratch space



Control Flow
int main(argc, argv){
 …
 f(3.14)
 …
}

int f(x){
 …
 g();
 …
}

int g(y){
 …
}

stack frame for 
main()PC/IP

SP



Architectural Support 
for Operating Systems

(Chapter 2)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]



Outline

1. Support for Processes
2. Support for Devices
3. Booting an O.S.



SUPPORT FOR PROCESSES



Hardware Support for Processes:
supervisor mode

• One primary objective of an O.S. kernel is to 
manage and isolate multiple processes
– Kernel runs in supervisor mode (aka kernel mode)

• unrestricted access to all hardware
– Processes run in user mode

• restricted access to memory, devices, certain machine 
instructions, …

• other instructions run directly on the CPU
– no performance penalty

– Kernel maintains a Process Control Block (PCB) for each 
process
• holds page table and more



How does the kernel get control?

• Boot (reset, power cycle, …)
– kernel initializes devices, etc.

• Signals
– user mode à supervisor mode

there is no “main loop”



Types of Signals

37

Exceptions (aka Faults)

• Synchronous / Non-maskable
• Process missteps (e.g., div-by-zero)
• Privileged instructions

(Device or I/O) Interrupts

• Asynchronous / Maskable
• HW device requires OS service

• timer, I/O device, inter-processor, …

System Calls

• Synchronous / Non-maskable
• User program requests OS service



Nomenclature warning

the term “interrupt” is often used 
synonymously with “signal”



• A CPU has only one device interrupt input
• An Interrupt Controller manages interrupts from 

multiple devices:
– Interrupts have descriptor of interrupting device
– Priority selector circuit examines all interrupting devices, 

reports highest priority level to the CPU

H/W Interrupt Management

39

CPU interrupt 
controllerinterrupt



Interrupt Processing

• Three objectives:
1. handle the interrupt
2. remove its cause
3. restore what was running before the interrupt
• state may have been modified on purpose

• Two “actors” in handling the interrupt:
1. the hardware goes first
2. the kernel code takes control in interrupt handler



Interrupt Processing (conceptually)

• On signal, hardware:
1. Saves certain state that is modified by the interrupt
• program counter and mode
• where?   (depends on hardware)

2. disables (“masks”) device interrupts
• at least interrupts of the same device

3. sets supervisor mode (if not set already)
4. sets PC to “signal handler”

• depends on signal type
• signal handlers specified in

“interrupt vector” initialized
during boot:

Interrupt Vector

I/O interrupt handler

system call handler

page fault handler

…



Interrupt Processing, cont’d
“return from interrupt” instruction:
– Restores mode
– Restores program counter / instruction pointer
– Re-enables interrupts



Two Stacks involved!

• User process has a stack to maintain control flow
– “user stack”

• Kernel has its own control flow thus also needs a stack
– “kernel stack” or “interrupt stack”

• Why can’t we use the same one?



Reasons for separating
user stack / kernel stack

• user SP may be illegal
– badly aligned or pointing to unwritable memory
– would make it impossible to service interrupt

• user stack may not be large enough and cause 
important data to be overwritten
– remember: stack grows down, heap grows up

• user may use SP for other things than stack
– interrupt could overwrite object in use

• security risks if only one stack:
– kernel could push sensitive data on user stack and unwittingly leave it 

there (pop does not erase memory)
– process could corrupt kernel code or data by pointing SP to kernel address

STACK

CODE

HEAP



Two architectures of O.S. kernels

“kernel is a special process” “kernel is a library”

P1 P2 P3 P4 P1 P2 P3 P4

most modern O.S.’s
(Linux, Windows, Mac OS X, …)

kernel



Comparison

Kernel is a process Kernel is a library
Kernel has one kernel stack.
Each process has a user stack

Each process has a user stack 
and a kernel stack (part of 
Process Control Block)

Kernel implemented using 
“event-based” programming
(programmer saves/restores 
process state explicitly)

Kernel implemented using 
“thread-based programming”
(handled by language run-time 
through “blocking”)

Kernel has to translate between 
virtual and physical addresses 
when accessing user memory

Kernel can access user memory 
directly (through page table)

Which architecture do you like better?  Why do you think most 
modern O.S.’s use the “kernel is a library” architecture?



Summary

• The ”kernel” is code that runs in supervisor mode
• A ”process” is code that runs in user mode
– always with interrupts enabled (why?)

• Each process has its own segments (code, data, heap, 
stack) and its own registers (pc, sp, r1, r2, …)
– both are “virtual” (CPU does not know)

• Switching between modes
– user mode à supervisor mode

• signal: interrupt, system call, exception/fault
– supervisor mode à user mode

• return-from-interrupt instruction



Interrupt Handling: software

• Interrupt handler automatically invoked by 
hardware upon an interrupt

• Interrupt handler first pushes the registers 
onto the interrupt stack of the currently 
running process (part of PCB)
– Why does it save the registers?
– Why doesn’t the hardware do that automatically?

answers on next page



Saving Registers

• On interrupt, the kernel needs to save the 
process registers as the kernel code needs to 
use the registers to handle the interrupt

• Registers are typically saved on the kernel 
stack but can be stored anywhere in the PCB

• Saving/restoring registers is expensive.  Not all 
registers need to be saved: the kernel uses 
only a subset, and most functions will already 
save and restore the registers that they use



Typical Interrupt Handler Code

HandleInterruptX:
PUSH %Rn
…
PUSH %R1
CALL __handleX // call C function handleX()
POP %R1
…
POP %Rn
RETURN_FROM_INTERRUPT

only need to save registers not 
saved by C functions

restore the registers saved above



Example Clock Interrupt Handler in C

#define CLK_DEV_REG 0xFFFE0300

void handleClockInterrupt( ){
int *cdr = (int *) CLK_DEV_REG;
*cdr = 1; // turn off clock interrupt
scheduler() // run another process?

}



Example System Call Handler in C

struct pcb *current_process;

int handle_syscall(int type){
switch (type) {
case GETPID: return current_process->pid;
…
}

}



Signal handling: View from the process

• (Device) Interrupts
– usually invisible to running process.  Process is restored to its 

prior state, including program counter
– certain interrupts may be passed on to process

• <control>C
• process that has requested a timer interrupt

• System calls
– process is usually modified in some ways

• dedicated register contains result of system call
• memory may have been modified (e.g., when reading from file)

• Exceptions (divide-by-zero, illegal address, etc.)
– process is usually terminated
– process can set up a handler if it so desires



How Kernel Starts a New Process

1. allocate and initialize a PCB
2. set up initial page table
3. push process arguments onto user stack
4. simulate an interrupt
– “save” program counter, interrupts enabled bit 

(enabled), supervisor mode bit (user mode)

5. clear all other registers (why?)
6. return-from-interrupt instruction



RISC-V interrupts

• A RISC-V processor has some important 
“control and status registers” (CSRs):
– mtvec: interrupt handler/vector
– mstatus:
• has bits for mode and interrupt enable
• has bits that saves pre-interrupt mode

– mepc: where PC is saved on interrupt
– mcause: info about cause of interrupt

• mret instruction restores PC and mode



Processing RISC-V interrupts

• Save mepc, mstatus, and SP in PCB
• Set SP to top of kernel stack (in PCB)
• Push registers to save them
– callee saved registers can be skipped

• Call C interrupt handler function
• Pop registers
• Restore user SP from PCB
• mret instruction (restores PC and status)



Starting a new process with RISC-V

• Allocate a PCB (with a kernel stack)
• Allocate and initialize page table
• Point SP to user stack
• Push process arguments
• Clear other registers
• Simulate an interrupt:
– set pre-interrupt mode in mstatus register
– store initial PC in mepc register

• mret instruction



SUPPORT FOR DEVICES



Device Management

• Another primary objective of an O.S. kernel 
is to manage and multiplex devices

• Example devices:
- screen
- keyboard
- mouse
- camera
- microphone
- printer

- clock
- disk
- USB
- Ethernet
- WiFi
- Bluetooth



ADDRESS BUS

DATA BUS

CONTROL BUS

CPU MEMORY DEVICE
REGISTERS

Architecture Diagram



Device Registers

• A device presents itself to the CPU as 
(pseudo)memory

• Simple example:
– each pixel on the screen is a word in memory that 

can be written

• Devices define a range of device registers
– accessible through LOAD and STORE operations
– do not confuse with CPU registers!



Example: Disk Device (simplified)

• can only read and write blocks, not words
• registers:

1. block number: which block to read or write
2. memory address: where to copy block from/to
3. command register: to start read/write operations
• device interrupts CPU upon completion

4. interrupt ack register: to tell device interrupt 
received

5. status register: to examine status of operations



Example: Network Device (simplified)

• registers:
1. receive memory address: for incoming packets
2. send memory address: for outgoing packets
3. command register: to send/receive packet

• device interrupts CPU upon completion

4. interrupt ack register: to tell device interrupt received
5. status register: to examine status of operations



Device Drivers
• Device Driver: a code module that deals with a particular brand/model 

of hardware device
– initialization
– starting operations
– interrupt handling
– error handling

• An O.S. has many disk drivers, many network drivers, etc.
– >90% of an O.S. code base
– huge security issue… WHY??

• But all disk drivers have a common API
– disk_init(), read_block(), write_block(), etc.

• So do all network drivers
– net_init(), receive_packet(), send_packet()



O.S. support for device drivers

• kernels provide many functions for drivers:
– interrupt management
– memory allocation
– queues
– copying between user space/kernel space
– error logging
– …



BOOTING AN O.S.



Booting an O.S.

• “pull oneself up by one's bootstraps”
• Steps in booting an O.S.:

1. CPU starts at fixed address
• in supervisor mode with interrupts disabled

2. BIOS (in ROM) loads “boot loader” code from 
specified storage or network device into memory 
and runs it

3. boot loader loads O.S. kernel code into memory 
and runs it



O.S. initialization

1. determine location/size of physical memory
2. set up initial MMU / page tables
3. initialize the interrupt vector
4. determine which devices the computer has
– invoke device driver initialization code for each

5. initialize file system code
6. load first process from file system
7. start first process



O.S. Code Architecture
Application ProcessApplication ProcessApplication ProcessO.S Process

Device DriverDevice DriverDevice DriverDevice Driver
Boot/Init

Process Management

File Systems

Memory Management

Network Protocols

Device Management

System
Calls

User Management

Application ProcessApplication ProcessApplication ProcessApplication Process

hardware-dependent 
code

us
er

 sp
ac

e
ke

rn
el


