
Conditional
Waiting



• Concurrent Programming is Hard!
• Non-Determinism
• Non-Atomicity
• Critical Sections simplify things by 

avoiding data races
-mutual exclusion
- progress
• Need both mutual exclusion and progress!
• Critical Sections use a lock
• Thread needs lock to enter the critical section
• Only one thread can get the section’s lock

Review

2



Idea: allow multiple read-only operations 
to execute concurrently
• Still no data races
• In many cases, reads are much more 

frequent than writes

èreader/writer lock
Either:
• multiple readers, or
• a single writer

How to get more concurrency?

3

thus not:
• a reader and a writer, nor
• multiple writers



• Thus far we’ve shown how threads can 
wait for one another to avoid multiple 
threads in the critical section
• Sometimes there are other reasons:
• Wait until queue is non-empty
• Wait until there are no readers (or writers) 

in a reader/writer lock
• …

Conditional Waiting

4



Reader/Writer Lock Specification

5



Reader/Writer Lock Specification

6

Invariants:
• if 𝑛 readers in the R/W critical section, then 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 𝑛
• if 𝑛 writers in the R/W critical section, then 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≥ 𝑛
• 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 0 ∧ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 = 0 ∨ (𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 = 0 ∧ 0 ≤ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≤ 1)



R/W Locks: test for mutual exclusion

7

no
 w

rite
r

1 writer and 
no readers



Cheating R/W lock implementation

8

The lock protects the 
application’s critical section



Cheating R/W lock implementation

9

Allows only one reader to get 
the lock at a time

Does not have the same 
behavior as the specification
• it is missing behaviors
• no bad behaviors though



Busy Waiting Implementation

10

The lock protects nreaders
and nwriters, not the 
critical section of the 
application 

waiting conditions



Busy Waiting Implementation

11

Good: has the same behaviors as 
the implemention

Bad: process is continuously 
scheduled to try to get the lock 
even if it’s not available

(Harmony complains about this 
as well)



• A lock can have one or more condition variables
• A thread that holds the lock but wants to wait 

for some condition to hold can temporarily 
release the lock by waiting on some condition 
variable
• Associate a condition variable with each 

“waiting condition”
• reader: no writer in the critical section
• writer: no readers nor writers in the c.s.

Mesa Condition Variables

12



• When a thread that holds the lock notices 
that some waiting condition is satisfied it 
should notify the corresponding 
condition variable

Mesa Condition Variables, cont’d

13



R/W lock with Mesa condition variables

14

r_cond: used by readers to wait on nwriters == 0
w_cond: used by writers to wait on nreaders == 0 == nwriters



R/W Lock, reader part

15



R/W Lock, reader part

16

similar to
busy waiting



R/W Lock, reader part

17

similar to
busy waiting

but need this



R/W Lock, reader part

18

NEVER EVER USE WAIT WITHOUT 

AN ENCLOSING WHILE (“naked wait”)



R/W Lock, reader part

19

compare with busy waiting



R/W Lock, reader part

20

compare with busy waiting



R/W Lock, reader part

21

compare with busy waiting



R/W Lock, reader part

22

compare with busy waiting



R/W Lock, writer part

23



R/W Lock, writer part

24



R/W Lock, writer part

25

don’t forget anybody!



R/W Lock, writer part

26

compare with busy waiting



• By the time waiter gets the lock back, 
condition may no longer hold
• Given three threads, W1, R2, W3
• W1 enters as a writer
• R2 waits as a reader
• W1 leaves, notifying R2
• W3 enters as a writer
• R2 wakes up
- If R2 doesn’t check condition again, R2 and W3 

would both be in the critical section

Why not use “if” instead of “while” 
around wait()?

27



• When notifying, be safe rather than sorry
• it’s better to notify too many threads than

too few
• in case of doubt, use notifyAll() instead of 

just notify()
• But this too can lead to some threads

waking up when their condition is no
longer satisfied

Why not use “if” instead of “while” 
around wait()?

28



• Because you should use while around 
wait, many condition variable 
implementation allow “spurious 
wakeups”
• wait() resumes even although condition 

variable was not notified

Why not use “if” instead of “while” 
around wait()?

29



Naked waits: just don’t do it

30



Busy Waiting vs Condition Variables

31

Busy Waiting Condition Variables
Use a lock and a loop Use a lock and a collection of 

condition variables and a loop
Easy to write the code Notifying is tricky
Easy to understand the code Easy to understand the code
Progress property is easy Progress requires careful 

consideration (both for correctness 
and efficiency)

Ok-ish for true multi-core, but bad 
for virtual threads

Good for both multi-core and 
virtual threading



Mesa Monitors in Harmony

32

Condition: consists 
of bag of threads 
waiting

wait: unlock + add 
thread context to bag 
of waiters

notify: remove one 
waiter from the bag 
of suspended threads

notifyAll: remove 
all waiters from the 
list of suspended 
threads


