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• The ”kernel contexts” of each of the processes 
share many data structures
o ready queue, wait queues, file system cache, and 

much more
• Sharing is further complicated by interrupt 

handlers that also access those data structures

An Operating System is a Concurrent Program
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• What is the problem?
o no determinism, no atomicity
• What is the solution?
o some form of locks
• How to implement locks?
o there are multiple ways
• How to specify concurrent problems?
o atomic operations
• How to construct correct concurrent code?
o invariants
• How to test concurrent programs
o comparing behaviors

Synchronization Lectures Outline
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Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like
• LOAD x
• ADD 1
• STORE x

Concurrent Programming is Hard
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Non-Determinism
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Non-Determinism
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#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed



Non-Determinism
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2 components, 0 bad states
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#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed



Non-Determinism
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#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed



2 threads updating a shared variable amount
o One thread (you) wants to decrement amount by $10K
o Other thread (IRS) wants to decrement amount by 50%

What happens when both threads are running?

Non-Atomicity
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. . .
amount -= 10,000
. . .

. . .
amount /= 2
. . .

Memory 100,000amount

T1 T2



Might execute like this:
Non-Atomicity
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Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount
r2 = r2 / 2
store r2 to amount
. . .

40,000amount

Or vice versa (T1 then T2 à 45,000)…
either way is fine…

T1

T2



Or it might execute like this:
Non-Atomicity
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Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount

. . .

r2 = r2 / 2
store r2 to amount
. . .

50,000amount

Lost Update!
Wrong ..and very difficult to debug

T1

T2



• 2 concurrent enqueue() operations?
• 2 concurrent dequeue() operations?

What could possibly go wrong?

Example: Races with Shared Queue
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tail head



= timing dependent error involving shared state 
o Once thread A starts, it needs to “race” to finish
o Whether race condition happens depends on 

thread schedule
• Different “schedules” or “interleavings” exist

(a schedule is a total order on machine instructions)

All possible interleavings
should be safe!

Race Conditions
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• Number of possible interleavings is huge
• Some interleavings are good
• Some interleavings are bad
- But bad interleavings may rarely happen!
- Works 100x ≠ no race condition

• Timing dependent: small changes hide bugs
o add print statement à bug no longer seems to happen

Race Conditions are Hard to Debug
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1. Students develop their code in Python or C
2. They test by running code many times
3. They submit their code, confident that it is correct
4. RVR tests the code with his secret and evil methods
o uses homebrew library that randomly samples from 

possible interleavings (“fuzzing”)
5. Finds most submissions are broken
6. RVR unhappy, students unhappy

My experience until last spring
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• Several studies show that heavily used code 
implemented, reviewed, and tested by expert 
programmers have lots of concurrency bugs

• Even professors who teach concurrency or write books 
and papers about concurrency get it wrong sometimes

Why is that?
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• Handwritten proofs just as likely to have bugs as programs
o or even more likely as you can’t test handwritten proofs
• Lack of mainstream tools to check concurrent algorithms
• Tools that do exist are great but have a steep learning curve

My take on the problem
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Examples of existing tools

Spin

PlusCal

TLA+



• A new concurrent programming language
o heavily based on Python syntax to reduce 

learning curve for many
• A new underlying virtual machine
o quite different from any other:

it tries all possible executions of a program
until it finds a problem, if any

(this is called “model checking”)

Enter Harmony
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Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True



Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()



Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Equivalent to:

while not (done1 and done2):
pass



Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Assertion: useful to check properties



Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Output amount if assertion fails



• An assertion is not part of your algorithm
• Semantically, an assertion is a no-op
o it’s expected never to fail because it is 

supposed to state a fact

An important note on assertions
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• Assertions are super-useful
o @label: assert 𝑃 is a type of invariant:

(𝑝𝑐 = 𝑙𝑎𝑏𝑒𝑙) ⇒ 𝑃
• Use them liberally
o In C, Java, …, they’re automatically 

removed in production code
o Or automatically optimized out if you have 

a really good compiler
• They are great for testing
• They are executable documentation
o comments tend to get outdated over time

That said…
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That said…
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Comment them out before you submit a 
programming assignment
o you don’t want your assertions to fail while 

we are testing your code J

That said…
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Back to example
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Initialize shared variables



Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Spawn three processes (threads)



Example (same as before)
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def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17].            17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000



Simplified model (ignoring main)
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T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount



Simplified model (ignoring main)
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_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount



Simplified model (ignoring main)
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_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded 
100000

T2 loaded 
100000

T1a

T2a



Simplified model (ignoring main)

35

_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 loaded 100000
T2 loaded 100000

T2a

T1a



Simplified model (ignoring main)

36

_init_

amount = 
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 got 
90000

T1 loaded 100000
T2 loaded 100000

T2 got 
50000

T2a

T1a

T1b

T2b

T1 stored 
90000T1c

T2a

T2c

T1a

T1b

T2b

T2a



Harmony Output

37

#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17].            17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17].            17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

#states in the state graph



Output
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#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

something went wrong in (at 
least) one path in the graph

(assertion failure)



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

turns

shortest path to
assertion failure



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

_init_



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

T1ab
_init_



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

T2abc
T1ab
_init_



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

T1c
T2abc
T1ab
_init_



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

main
T1c
T2abc
T1ab
_init_



Output
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#states = 100 diameter = 5
==== Safety violation ====                     
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

main
T1c
T2abc
T1ab
_init_



Output
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__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17].            17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

name of a thread



Output
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__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

“steps” = 
list of program counters
of machine instructions 

executed



0  Jump 40
1  Frame T1 ()
2  Load amount
3  Push 10000
4  2-ary −
5  Store amount
6  Push True
7  Store done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code
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T1a: LOAD amount

T1b: SUB 10000

T1c: STORE amount

T1d: done1 = True

T2a: LOAD amount

T2b: DIV 2

T2c: STORE amount

T2d: done2 = True

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True



0  Jump 40 PC := 40
1  Frame T1 ()
2  Load amount
3  Push 10000
4  2-ary −
5  Store amount
6  Push True
7  Store done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code
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0  Jump 40 PC := 40
1  Frame T1 ()
2  Load amount push amount onto the stack of thread T1
3  Push 10000
4  2-ary −
5  Store amount
6  Push True
7  Store done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code
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0  Jump 40 PC := 40
1  Frame T1 ()
2  Load amount push amount onto the stack of thread T1
3  Push 10000 push 10000 onto the stack of thread T1
4  2-ary − replace top two elements of stack with difference
5  Store amount
6  Push True
7  Store done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code
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0  Jump 40 PC := 40
1  Frame T1 ()
2  Load amount push amount onto the stack of thread T1
3  Push 10000 push 10000 onto the stack of thread T1
4  2-ary − replace top two elements of stack with difference
5  Store amount store top of the stack of T1 into amount
6  Push True
7  Store done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code
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0  Jump 40 PC := 40
1  Frame T1 ()
2  Load amount push amount onto the stack of process T1
3  Push 10000 push 10000 onto the stack of process T1
4  2-ary − replace top two elements of stack with difference
5  Store amount store top of the stack of T1 into amount
6  Push True push True onto the stack of thread T1
7  Store done1 store top of the stack of T1 into done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code
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0  Jump 40 PC := 40
1  Frame T1 ()
2  Load amount push amount onto the stack of process T1
3  Push 10000 push 10000 onto the stack of process T1
4  2-ary − replace top two elements of stack with difference
5  Store amount store top of the stack of T1 into amount
6  Push True push True onto the stack of thread T1
7  Store done1 store top of the stack of T1 into done1
8  Return
9  Jump 40

10 Frame T2 ()
11 Load amount push amount onto the stack of thread T2
12 Push 2 push 2 onto the stack of thread T2
13 2-ary / replace top two elements of stack with division
14 Store amount store top of the stack of T2 into amount
15 Push True push True onto the stack of thread T2
16 Store done2 store top of the stack of T2 into done2
17 Return
18 …

Harmony Machine Code
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Output

56

__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5 { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

current program counter 
(after turn)



Output
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__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4]                  5  { amount: 100000, done1: False, done2: False }
T2/() [10-17]             17 { amount: 50000,   done1: False, done2: True  }
T1/() [5-8]                   8 { amount: 90000,   done1: True,  done2: True  }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

current state
(after turn)



Three parts:
1. code (which never changes)
2. values of the shared variables
3. states of each of the running processes
- “contexts”

State represents one vertex in the graph model

Harmony Virtual Machine State

58



• Method name and parameters
• PC (program counter)
• stack (+ implicit stack pointer)
• local variables
o parameters (aka arguments)
o “result”
- there is no return statement
o local variables
- declared in var, let, and for statements

Context (state of a process)
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Harmony != Python
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Harmony Python
tries all possible executions executes just one
( … ) == [ … ] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

{ } is empty set { } is empty dictionary
few operator precedence rules ---
use parentheses often

many operator precedence rules

variables global unless declared 
otherwise

depends... Sometimes must be 
explicitly declared global

no return, break, continue various flow control escapes
no classes object-oriented
… …



• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

61



• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?
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No open(), re
ad(), or

or input() sta
tements



Three sources:
1. choose expressions
2. thread interleavings
3. Interrupts

Non-determinism in Harmony
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Limitation: models must be finite!

64

_init_

amount = 
100000

init
T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 got 
90000

T1 loaded 100000
T2 loaded 100000

T2 got 
50000

T2a

T1a

T1b

T2b

T1 stored 
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a



Limitation: models must be finite!
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_init_

amount = 
100000

init
T1 loaded 
100000

T2 loaded 
100000

T1a

T2a

T1 got 
90000

T1 loaded 100000
T2 loaded 100000

T2 got 
50000

T2a

T1a

T1b

T2b

T1 stored 
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a

• But models are allowed to have cycles.
• Executions are allowed to be unbounded!
• Harmony checks for possibility of termination



2 threads updating a shared variable amount
o One thread wants to decrement amount by $10K
o Other thread wants to decrement amount by 50%

How to “serialize” these executions?

Back to our problem…

66

. . .
amount -= 10000
. . .

. . .
amount /= 2
. . .

Memory 100000amount

T1 T2



Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: all threads make it into the CS if desired
Fairness: equal chances of getting into CS

… in practice, fairness rarely guaranteed

Critical Section

67

. . .
CSEnter()
amount -= 10000

CSExit()
. . .

. . .
CSEnter()
amount /= 2

CSExit()
. . .

T1 T2



Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: at least one thread makes it into the CS if 
desired and no other thread is there
Fairness: equal chances of getting into CS

… in practice, fairness rarely guaranteed or needed

Critical Section
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. . .
CSEnter()
Critical section

CSExit()
. . .

. . .
CSEnter()
Critical section

CSExit()
. . .

T1 T2



• Need both:
o either one is trivial to achieve by itself

Mutual Exclusion and Progress

69



Critical Sections in Harmony
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def thread(self):
while True:

…    # code outside critical section
…    # code to enter the critical section
…    # critical section itself
…    # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress? 



Critical Sections in Harmony
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def thread(self):
while True:

…    # code outside critical section
…    # code to enter the critical section
cs: assert countLabel(cs) == 1
…    # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress? 



Critical Sections in Harmony
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def thread(self):
while choose( { False, True } ):

…    # code outside critical section
…    # code to enter the critical section
cs: assert countLabel(cs) == 1
…    # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress? 

• if code to enter/exit the critical section 
cannot terminate, Harmony with balk



• True, but this is an O.S. class!
• The question is:

How does one build a lock?

• Harmony is a concurrent 
programming language.  Really, 
doesn’t Harmony have locks?

You have to program them!

Sounds like you need a lock…
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First attempt: a naïve lock
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First attempt: a naïve lock
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wait till lock is free, then take it



First attempt: a naïve lock
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wait till lock is free, then take it

release the lock



First attempt: a naïve lock
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==== Safety violation ==== 
__init__/() [0,26-36]                        36 { lockTaken: False }
thread/0 [1-2,3(choose True),4-7]     8 { lockTaken: False }
thread/1 [1-2,3(choose True),4-8]     9 { lockTaken: True }
thread/0 [8-19]                                 19 { lockTaken: True }
>>> Harmony Assertion (file=code/naiveLock.hny, line=10) failed



Second attempt: flags
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Second attempt: flags
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enter, then wait for other



Second attempt: flags
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enter, then wait for other

leave



Second attempt: flags
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Second attempt: flags

82

==== Non-terminating State ===
__init__/() [0,36-46]                          46 { flags: [False, False] }
thread/0 [1-2,3(choose True),4-12] 13 { flags: [True,  False] }
thread/1 [1-2,3(choose True),4-12] 13 { flags: [True,  True] }
blocked thread: thread/1 pc = 13
blocked thread: thread/0 pc = 13



Third attempt: turn variable
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Third attempt: turn variable
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after you...



Third attempt: turn variable
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wait for your turn

after you...



Third attempt: turn variable
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==== Non-terminating State ===
__init__/() [0,28-38]                                                       38 { turn: 0 }
thread/0 [1-2,3(choose True),4-26,2,3(choose True),4]   5 { turn: 1 }
thread/1 [1-2,3(choose False),4,27]                                27 { turn: 1 }
blocked thread: thread/0 pc = 5



Peterson’s Algorithm: flags & turn
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Peterson’s Algorithm: flags & turn
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latest version of Harmony only



Peterson’s Algorithm: flags & turn
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“you go first”



Peterson’s Algorithm: flags & turn
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“you go first”
wait until alone or 

it’s my turn



Peterson’s Algorithm: flags & turn
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“you go first”
wait until alone or 

it’s my turn

leave



Peterson’s Algorithm: flags & turn
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#states = 104 diameter = 5
#components: 37 
no issues found



So, we proved Peterson’s Algorithm 
correct by brute force, enumerating all 
possible executions.  We now know that it 
works.

But how does one prove it by deduction?
so one understands why it works…

93



• Need to show that, for any execution, all 
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?
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A property that holds in all reachable states
(and possibly in some unreachable states as well)

What is a property?

A property is a set of states

often succinctly described using a predicate
(all states that satisfy the predicate and no others)

What is an invariant?

95



• Need to show that, for any execution, all 
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the 

resulting list is ordered

• Let’s try proof by induction on the length of 
an execution

How to prove an invariant?
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You want to prove that some Induction 
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction
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To show that some IH holds for an 
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E, 

then for any possible next step s,  IH also holds 
in the state produced by E + [s]

Proof by induction in our case

98



• Mutual Exclusion can be implemented 
with atomic LOAD and STORE 
instructions to access shared memory
o multiple STOREs and LOADs
• Peterson’s can be generalized to >2 

processes
o even more STOREs and LOADs

Too inefficient in practice

Peterson’s Reconsidered
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• Assumes that LOAD and STORE 
instructions are atomic
• Not guaranteed on a real processor
• Also not guaranteed by C, Java, Python, 

…

Peterson’s Reconsidered More
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• Suppose x is a 64-bit integer
• Suppose you have a 32-bit CPU
• Then ”x = 0” requires 2 stores
o because x occupies 2 words
• Similarly, reading x requires 2 loads
• Same is true is x is a 32-bit integer but x is 

not aligned on a word boundary
o For example, address of x is 0x12340002

Non-atomic load/store example
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• Suppose x is a 32 bit word @ 0x12340002
• Suppose you have 2 threads, T1 and T2
o T1: x = 0xFFFFFFFF (i.e., x = −1)
o T2: x = 0
• After T1 and T2 are done, x may be
o 0, 0xFFFFFFFF, 0xFFFF0000, or 0x0000FFFF
• Because of this, programming languages 

will typically leave the outcome of 
concurrent write operations to a variable 
undefined.

Concurrent writing
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• Suppose x is a 32 bit word @ 0x12340002
• Suppose x is initially 0
• Suppose you have 2 threads, T1 and T2
o T1: x = 0xFFFFFFFF (i.e., x = −1)
o T2: y = x (i.e., T2 reads x)
• After T1 and T2 are done, y may contain
o 0, 0xFFFFFFFF, 0xFFFF0000, or 0x0000FFFF
• Because of this, programming languages 

will typically leave the outcome of 
concurrent read and write operations to a 
variable undefined.

Concurrent reading
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• When two threads access the same variable
• And at least one is a STORE
• Then the semantics of the outcome is undefined

Data Race
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• sequential turn, flags
• ensures that loads/stores are atomic
• that is, concurrent operations appear to be 

executed sequentially
• This is called “sequential consistency”
For example
• Shared variable x contains 3
• Thread A stores 4 into x
• Thread B loads x
o With atomic load/store operations, B will read either 3 or 4
o With modern CPUs/compilers, the value that B reads is 

undefined

Harmony “sequential” statement
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• Java has a similar notion:
o volatile int x ;
• Not to be confused with the same 

keyword in C and C++ though…
• Loading/storing volatile (sequentially 

consistent) variables is more expensive 
than loading/storing ordinary variables
o because it restricts CPU and/or compiler 

optimizations

Sequential consistency

132



So, what do we do?
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• Machine instructions that do multiple shared 
memory accesses atomically

• e.g., TestAndSet s
o sets s to True
o returns old value of s
• i.e., does the following:
- LOAD r0, s # load variable s into register r0
- STORE s, 1 # store TRUE in variable s

• Entire operation is atomic
o other machine instructions cannot interleave

Enter Interlock Instructions
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• If x is a shared variable, ?x is the address of x
• If p is a shared variable and p == ?x, then we say 

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers
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• If x is a shared variable, ?x is the address of x
• If p is a shared variable and p == ?x, then we say 

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

138

Where?
There!



• For example:
lock1 = False
lock2 = True
r1 = test_and_set(?lock1)
r2 = test_and_set(?lock2)
assert lock1 and lock2
assert (not r1) and r2

Test-and-Set in Harmony
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Recall: bad lock implementation
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Good implementation (“spinlock”)
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Best understood as “baton passing”
o At most one thread, or 𝑠ℎ𝑎𝑟𝑒𝑑, can “hold” False

“Locks”
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Specifying a lock

150



• We say that a lock is held or owned by a thread
o implicit “ghost” state
o nonetheless can be used for reasoning

• Two important invariants: 
1. 𝑇@𝑐𝑠 ⇒ 𝑇 holds the lock
2. at most one thread can hold the lock

Most systems (incl. “standard” Harmony 
modules) do not keep track of who holds a 
particular lock, if anybody

“Ghost” state
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Implementing a lock
(just one way of doing so)

152

specification of the CPU’s
test_and_set functionality

must also use an atomic 
STORE instruction



Specification vs Implementation
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Specification: describes what an abstraction does
Implementation: describes how



Using a lock for a critical section
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• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing
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• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is 

trying to obtain a lock spinlock
o when there is pre-emption?

Spinlocks and Time Sharing
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• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is 

trying to obtain a lock spinlock
o when there is pre-emption?
- can cause delays and waste of CPU cycles while 

a thread is trying to obtain a spinlock

Spinlocks and Time Sharing
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• Harmony allows contexts to be saved 
and restored (i.e., context switch)

o r = stop p
- stops the current thread and stores context in !p
o go (!p) r
- adds a thread with the given context to the bag 

of threads.  Thread resumes from stop
expression, returning r

Context switching in Harmony

158



Locks using stop and go
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.acquired: boolean

.suspended: queue of contexts



Locks using stop and go

160

Similar to a Linux “futex”: if there is no contention 
(hopefully the common case) acquire() and release() are 
cheap.  If there is contention, they involve a context switch.



• “synch” is the (default) module that has 
the specification of a lock
• “synchS” is the module that has the 
stop/go version of lock
• you can select which one you want:

harmony -m synch=synchS x.hny

• “synch” tends to be faster than “synchS”
- smaller state graph

Choosing modules in Harmony
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Atomic section ≠ Critical Section

162

Atomic Section Critical Section
only one thread can execute multiple threads can execute 

concurrently, just not within a 
critical section

rare programming language 
paradigm

ubiquitous: locks available in 
many mainstream 
programming languages

good for specifying interlock 
instructions

good for implementing 
concurrent data structures



• Each data structure maintains some consistency 
property
o e.g., in a linked list, there is a head, a tail, a list of 

nodes such that head points to first node, tail points 
to the last node, and each node points to the next 
one except the last, which points to None.  However, 
if the list is empty, head and tail are both None.

Data Structure consistency
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• Each data structure maintains some consistency 
property
o e.g., in a linked list, there is a head, a tail, a list of 

nodes such that head points to first node, tail points 
to the last node, and each node points to the next 
one except the last, which points to None.  However, 
if the list is empty, head and tail are both None.

• You can assume the property holds right after 
obtaining the lock
• You must make sure the property holds again 

right before releasing the lock

Using locks
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• Each data structure maintains some consistency 
property
• Invariant:
o lock not held ⟹ data structure consistent
• Or equivalently:
o data structure inconsistent ⟹ lock held

Using locks

165



• q = queue.Queue(): initialize a new queue
• queue.put(q, v): add v to the tail of queue q
• v = queue.get(q): returns None if q is empty or 

v if v was at the head of the queue

Building a Concurrent Queue
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Specifying a concurrent queue
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Example of using a queue
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enqueue v onto q

dequeue and check

create queue



Specifying a concurrent queue
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not a good implementation because operations are O(n)



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Figure 11.3 in Harmony book



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

empty queue



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

allocate node



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

release lock

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

malloc’d memory must 
be explicitly released

(cf. C)



• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?
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• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

181
Good performance is critical!



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

atomically q->tail->next = node 



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent 
enqueue and dequeue operations! 
è more concurrency è faster



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent 
enqueue and dequeue operations! 
è more concurrency è faster

BUT: data race on dummyànext when queue is empty



• The two-lock queue is an example of a data 
structure with finer-grained locking
• A global lock is easy, but limits concurrency
• Fine-grained or local locking can improve 

concurrency, but tends to be trickier to get right

Global vs. Local Locks
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Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

empty list



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two 
consecutive nodes before and after such that
before → 𝑣𝑎𝑙𝑢𝑒 < 𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟 → 𝑣𝑎𝑙𝑢𝑒



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two 
consecutive nodes before and after such that
before → 𝑣𝑎𝑙𝑢𝑒 < 𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟 → 𝑣𝑎𝑙𝑢𝑒

Hand-over hand locking
(good for data structures 
without cycles)



Sorted Linked List with Lock per Node
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Sorted Linked List with Lock per Node
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Multiple threads can access the 
list simultaneously, but they 
can’t overtake one another



Testing a Concurrent Queue?
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Testing a Concurrent Queue?
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• ad hoc
• unsystematic



• Sequential case
o try all “sequences” of 1 operation
- put or get
o try all sequences of 2 operations
- put+put, put+get, get+put, get+get, …
o try all sequences of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test 

against implementation with running test 
against the sequential specification

Systematic Testing
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• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test 

against concurrent implementation with 
running test against the concurrent 
specification

Systematic Testing
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Life of an atomic operation

197

process invokes 
operation

process resumes 
with result

operation happens 
atomically

TIME



Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

Concurrency and Overlap
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Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

We’ve all seen this happen.  It’s a matter of 
how things get scheduled!

Concurrency and Overlap
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• One operation: order a burger
o result: a burger (at some later time)
• Semantics: the burger manifests itself 

atomically sometime during the operation
• Atomically: no two manifestations overlap
• It’s easier to specify something when you don’t 

have to worry about overlap
o i.e., you can simply give a sequential specification
• Allows many implementations

Specification

200



• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs 

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X  receives burger

Implementation?

201

1

2

X:

Y:



• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs 

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X  receives burger

Implementation?
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1

2

X:

Y:

• can’t happen if Y orders burger after X receives burger
• but if operations overlap, any ordering can happen… 



Correct Behaviors
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put(1)

get() à ?

TIME

(1)



Correct Behaviors
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put(1)

get() à 1

TIME

(1)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à ?

(1)

(2)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

(1)

(2)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à ???

(1)

(2)

(3)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à None

(1)

(2)

(3)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à 1

(1)

(2)

(3)



• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test 

against concurrent implementation with 
running test against the concurrent 
specification

Testing Concurrent Objects
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Concurrent queue test program
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Behavior (NOPS=2: 1 get, 1 put)
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• The first command outputs the behavior of 
running the test program against the 
specification in file queue4.hfa
• The second command runs the test program 

against the implementation and checks if its 
behavior matches that stored in queue4.hfa

Testing: comparing behaviors

213


