
Concurrent Programming:
Critical Sections and Locks

CS 4410
Operating Systems

[Robbert van Renesse]

• The ”kernel contexts” of each of the processes
share many data structures
o ready queue, wait queues, file system cache, and

much more
• Sharing is further complicated by interrupt

handlers that also access those data structures

An Operating System is a Concurrent Program

2

• What is the problem?
o no determinism, no atomicity
• What is the solution?
o some form of locks
• How to implement locks?
o there are multiple ways
• How to specify concurrent problems?
o atomic operations
• How to construct correct concurrent code?
o invariants
• How to test concurrent programs
o comparing behaviors

Synchronization Lectures Outline

3

Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like
• LOAD x
• ADD 1
• STORE x

Concurrent Programming is Hard

4

Non-Determinism

5

Non-Determinism

6

#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed

Non-Determinism

7

#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed

Non-Determinism

8

#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed

2 threads updating a shared variable amount
o One thread (you) wants to decrement amount by $10K
o Other thread (IRS) wants to decrement amount by 50%

What happens when both threads are running?

Non-Atomicity

9

. . .
amount -= 10,000
. . .

. . .
amount /= 2
. . .

Memory 100,000amount

T1 T2

Might execute like this:
Non-Atomicity

10

Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount
r2 = r2 / 2
store r2 to amount
. . .

40,000amount

Or vice versa (T1 then T2 à 45,000)…
either way is fine…

T1

T2

Or it might execute like this:
Non-Atomicity

11

Memory

. . .
r1 = load from amount
r1 = r1 – 10,000
store r1 to amount
. . .

. . .
r2 = load from amount

. . .

r2 = r2 / 2
store r2 to amount
. . .

50,000amount

Lost Update!
Wrong ..and very difficult to debug

T1

T2

• 2 concurrent enqueue() operations?
• 2 concurrent dequeue() operations?

What could possibly go wrong?

Example: Races with Shared Queue

12

tail head

= timing dependent error involving shared state
o Once thread A starts, it needs to “race” to finish
o Whether race condition happens depends on

thread schedule
• Different “schedules” or “interleavings” exist

(a schedule is a total order on machine instructions)

All possible interleavings
should be safe!

Race Conditions

13

• Number of possible interleavings is huge
• Some interleavings are good
• Some interleavings are bad
- But bad interleavings may rarely happen!
- Works 100x ≠ no race condition

• Timing dependent: small changes hide bugs
o add print statement à bug no longer seems to happen

Race Conditions are Hard to Debug

14

1. Students develop their code in Python or C
2. They test by running code many times
3. They submit their code, confident that it is correct
4. RVR tests the code with his secret and evil methods
o uses homebrew library that randomly samples from

possible interleavings (“fuzzing”)
5. Finds most submissions are broken
6. RVR unhappy, students unhappy

My experience until last spring

15

• Several studies show that heavily used code
implemented, reviewed, and tested by expert
programmers have lots of concurrency bugs

• Even professors who teach concurrency or write books
and papers about concurrency get it wrong sometimes

Why is that?

16

• Handwritten proofs just as likely to have bugs as programs
o or even more likely as you can’t test handwritten proofs
• Lack of mainstream tools to check concurrent algorithms
• Tools that do exist are great but have a steep learning curve

My take on the problem

17

Examples of existing tools

Spin

PlusCal

TLA+

• A new concurrent programming language
o heavily based on Python syntax to reduce

learning curve for many
• A new underlying virtual machine
o quite different from any other:

it tries all possible executions of a program
until it finds a problem, if any

(this is called “model checking”)

Enter Harmony

19

Example (same as before)

20

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

Example (same as before)

21

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Example (same as before)

22

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Equivalent to:

while not (done1 and done2):
pass

Example (same as before)

23

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Assertion: useful to check properties

Example (same as before)

24

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Output amount if assertion fails

• An assertion is not part of your algorithm
• Semantically, an assertion is a no-op
o it’s expected never to fail because it is

supposed to state a fact

An important note on assertions

25

• Assertions are super-useful
o @label: assert 𝑃 is a type of invariant:

(𝑝𝑐 = 𝑙𝑎𝑏𝑒𝑙) ⇒ 𝑃
• Use them liberally
o In C, Java, …, they’re automatically

removed in production code
o Or automatically optimized out if you have

a really good compiler
• They are great for testing
• They are executable documentation
o comments tend to get outdated over time

That said…

26

That said…

27

Comment them out before you submit a
programming assignment
o you don’t want your assertions to fail while

we are testing your code J

That said…

28

Back to example

29

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Initialize shared variables

Example (same as before)

30

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

Spawn three processes (threads)

Example (same as before)

31

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

def main():
await done1 and done2
assert (amount == 40000) or (amount == 45000), amount

done1 = done2 = False
amount = 100000
spawn T1()
spawn T2()
spawn main()

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17]. 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

Simplified model (ignoring main)

32

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

Simplified model (ignoring main)

33

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

Simplified model (ignoring main)

34

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T1a

T2a

Simplified model (ignoring main)

35

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1 loaded 100000
T2 loaded 100000

T2a

T1a

Simplified model (ignoring main)

36

init

amount =
100000

init

T1a: LOAD amount
T1b: SUB 10000
T1c: STORE amount

T2a: LOAD amount
T2b: DIV 2
T2c: STORE amount

T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1 got
90000

T1 loaded 100000
T2 loaded 100000

T2 got
50000

T2a

T1a

T1b

T2b

T1 stored
90000T1c

T2a

T2c

T1a

T1b

T2b

T2a

Harmony Output

37

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17]. 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

Output

38

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17]. 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

#states in the state graph

Output

39

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

something went wrong in (at
least) one path in the graph

(assertion failure)

Output

40

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

turns

shortest path to
assertion failure

Output

41

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

init

Output

42

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

T1ab
init

Output

43

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

T2abc
T1ab
init

Output

44

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

T1c
T2abc
T1ab
init

Output

45

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

main
T1c
T2abc
T1ab
init

Output

46

#states = 100 diameter = 5
==== Safety violation ====
__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }
>>> Harmony Assertion (file=test.hny, line=11) failed: 90000

main
T1c
T2abc
T1ab
init

Output

47

__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17]. 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

name of a thread

Output

48

__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

“steps” =
list of program counters
of machine instructions

executed

0 Jump 40
1 Frame T1 ()
2 Load amount
3 Push 10000
4 2-ary −
5 Store amount
6 Push True
7 Store done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code

49

T1a: LOAD amount

T1b: SUB 10000

T1c: STORE amount

T1d: done1 = True

T2a: LOAD amount

T2b: DIV 2

T2c: STORE amount

T2d: done2 = True

def T1():
amount −= 10000
done1 = True

def T2():
amount /= 2
done2 = True

0 Jump 40 PC := 40
1 Frame T1 ()
2 Load amount
3 Push 10000
4 2-ary −
5 Store amount
6 Push True
7 Store done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code

50

0 Jump 40 PC := 40
1 Frame T1 ()
2 Load amount push amount onto the stack of thread T1
3 Push 10000
4 2-ary −
5 Store amount
6 Push True
7 Store done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code

51

0 Jump 40 PC := 40
1 Frame T1 ()
2 Load amount push amount onto the stack of thread T1
3 Push 10000 push 10000 onto the stack of thread T1
4 2-ary − replace top two elements of stack with difference
5 Store amount
6 Push True
7 Store done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code

52

0 Jump 40 PC := 40
1 Frame T1 ()
2 Load amount push amount onto the stack of thread T1
3 Push 10000 push 10000 onto the stack of thread T1
4 2-ary − replace top two elements of stack with difference
5 Store amount store top of the stack of T1 into amount
6 Push True
7 Store done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code

53

0 Jump 40 PC := 40
1 Frame T1 ()
2 Load amount push amount onto the stack of process T1
3 Push 10000 push 10000 onto the stack of process T1
4 2-ary − replace top two elements of stack with difference
5 Store amount store top of the stack of T1 into amount
6 Push True push True onto the stack of thread T1
7 Store done1 store top of the stack of T1 into done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount
12 Push 2
13 2-ary /
14 Store amount
15 Push True
16 Store done2
17 Return
18 …

Harmony Machine Code

54

0 Jump 40 PC := 40
1 Frame T1 ()
2 Load amount push amount onto the stack of process T1
3 Push 10000 push 10000 onto the stack of process T1
4 2-ary − replace top two elements of stack with difference
5 Store amount store top of the stack of T1 into amount
6 Push True push True onto the stack of thread T1
7 Store done1 store top of the stack of T1 into done1
8 Return
9 Jump 40

10 Frame T2 ()
11 Load amount push amount onto the stack of thread T2
12 Push 2 push 2 onto the stack of thread T2
13 2-ary / replace top two elements of stack with division
14 Store amount store top of the stack of T2 into amount
15 Push True push True onto the stack of thread T2
16 Store done2 store top of the stack of T2 into done2
17 Return
18 …

Harmony Machine Code

55

Output

56

__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

current program counter
(after turn)

Output

57

__init__/() [0,40-58] 58 { amount: 100000, done1: False, done2: False }
T1/() [1-4] 5 { amount: 100000, done1: False, done2: False }
T2/() [10-17] 17 { amount: 50000, done1: False, done2: True }
T1/() [5-8] 8 { amount: 90000, done1: True, done2: True }
main/() [19-23,25-34,36-37] 37 { amount: 90000, done1: True, done2: True }

current state
(after turn)

Three parts:
1. code (which never changes)
2. values of the shared variables
3. states of each of the running processes
- “contexts”

State represents one vertex in the graph model

Harmony Virtual Machine State

58

• Method name and parameters
• PC (program counter)
• stack (+ implicit stack pointer)
• local variables
o parameters (aka arguments)
o “result”
- there is no return statement
o local variables
- declared in var, let, and for statements

Context (state of a process)

59

Harmony != Python

60

Harmony Python
tries all possible executions executes just one
(…) == […] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

{ } is empty set { } is empty dictionary
few operator precedence rules ---
use parentheses often

many operator precedence rules

variables global unless declared
otherwise

depends... Sometimes must be
explicitly declared global

no return, break, continue various flow control escapes
no classes object-oriented
… …

• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

61

• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

62

No open(), re
ad(), or

or input() sta
tements

Three sources:
1. choose expressions
2. thread interleavings
3. Interrupts

Non-determinism in Harmony

63

Limitation: models must be finite!

64

init

amount =
100000

init
T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1 got
90000

T1 loaded 100000
T2 loaded 100000

T2 got
50000

T2a

T1a

T1b

T2b

T1 stored
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a

Limitation: models must be finite!

65

init

amount =
100000

init
T1 loaded
100000

T2 loaded
100000

T1a

T2a

T1 got
90000

T1 loaded 100000
T2 loaded 100000

T2 got
50000

T2a

T1a

T1b

T2b

T1 stored
90000

T1c

T2a

T2c

T1a

T1b

T2b

T2a

• But models are allowed to have cycles.
• Executions are allowed to be unbounded!
• Harmony checks for possibility of termination

2 threads updating a shared variable amount
o One thread wants to decrement amount by $10K
o Other thread wants to decrement amount by 50%

How to “serialize” these executions?

Back to our problem…

66

. . .
amount -= 10000
. . .

. . .
amount /= 2
. . .

Memory 100000amount

T1 T2

Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: all threads make it into the CS if desired
Fairness: equal chances of getting into CS

… in practice, fairness rarely guaranteed

Critical Section

67

. . .
CSEnter()
amount -= 10000

CSExit()
. . .

. . .
CSEnter()
amount /= 2

CSExit()
. . .

T1 T2

Must be serialized due to shared memory access

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: at least one thread makes it into the CS if
desired and no other thread is there
Fairness: equal chances of getting into CS

… in practice, fairness rarely guaranteed or needed

Critical Section

68

. . .
CSEnter()
Critical section

CSExit()
. . .

. . .
CSEnter()
Critical section

CSExit()
. . .

T1 T2

• Need both:
o either one is trivial to achieve by itself

Mutual Exclusion and Progress

69

Critical Sections in Harmony

70

def thread(self):
while True:

… # code outside critical section
… # code to enter the critical section
… # critical section itself
… # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?

Critical Sections in Harmony

71

def thread(self):
while True:

… # code outside critical section
… # code to enter the critical section
cs: assert countLabel(cs) == 1
… # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?

Critical Sections in Harmony

72

def thread(self):
while choose({ False, True }):

… # code outside critical section
… # code to enter the critical section
cs: assert countLabel(cs) == 1
… # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?

• if code to enter/exit the critical section
cannot terminate, Harmony with balk

• True, but this is an O.S. class!
• The question is:

How does one build a lock?

• Harmony is a concurrent
programming language. Really,
doesn’t Harmony have locks?

You have to program them!

Sounds like you need a lock…

73

First attempt: a naïve lock

74

First attempt: a naïve lock

75

wait till lock is free, then take it

First attempt: a naïve lock

76

wait till lock is free, then take it

release the lock

First attempt: a naïve lock

77

==== Safety violation ====
__init__/() [0,26-36] 36 { lockTaken: False }
thread/0 [1-2,3(choose True),4-7] 8 { lockTaken: False }
thread/1 [1-2,3(choose True),4-8] 9 { lockTaken: True }
thread/0 [8-19] 19 { lockTaken: True }
>>> Harmony Assertion (file=code/naiveLock.hny, line=10) failed

Second attempt: flags

78

Second attempt: flags

79

enter, then wait for other

Second attempt: flags

80

enter, then wait for other

leave

Second attempt: flags

81

Second attempt: flags

82

==== Non-terminating State ===
__init__/() [0,36-46] 46 { flags: [False, False] }
thread/0 [1-2,3(choose True),4-12] 13 { flags: [True, False] }
thread/1 [1-2,3(choose True),4-12] 13 { flags: [True, True] }
blocked thread: thread/1 pc = 13
blocked thread: thread/0 pc = 13

Third attempt: turn variable

83

Third attempt: turn variable

84

after you...

Third attempt: turn variable

85

wait for your turn

after you...

Third attempt: turn variable

86

==== Non-terminating State ===
__init__/() [0,28-38] 38 { turn: 0 }
thread/0 [1-2,3(choose True),4-26,2,3(choose True),4] 5 { turn: 1 }
thread/1 [1-2,3(choose False),4,27] 27 { turn: 1 }
blocked thread: thread/0 pc = 5

Peterson’s Algorithm: flags & turn

87

Peterson’s Algorithm: flags & turn

88

latest version of Harmony only

Peterson’s Algorithm: flags & turn

89

“you go first”

Peterson’s Algorithm: flags & turn

90

“you go first”
wait until alone or

it’s my turn

Peterson’s Algorithm: flags & turn

91

“you go first”
wait until alone or

it’s my turn

leave

Peterson’s Algorithm: flags & turn

92

#states = 104 diameter = 5
#components: 37
no issues found

So, we proved Peterson’s Algorithm
correct by brute force, enumerating all
possible executions. We now know that it
works.

But how does one prove it by deduction?
so one understands why it works…

93

• Need to show that, for any execution, all
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?

94

A property that holds in all reachable states
(and possibly in some unreachable states as well)

What is a property?

A property is a set of states

often succinctly described using a predicate
(all states that satisfy the predicate and no others)

What is an invariant?

95

• Need to show that, for any execution, all
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the

resulting list is ordered

• Let’s try proof by induction on the length of
an execution

How to prove an invariant?

96

You want to prove that some Induction
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction

97

To show that some IH holds for an
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E,

then for any possible next step s, IH also holds
in the state produced by E + [s]

Proof by induction in our case

98

• Mutual Exclusion can be implemented
with atomic LOAD and STORE
instructions to access shared memory
o multiple STOREs and LOADs
• Peterson’s can be generalized to >2

processes
o even more STOREs and LOADs

Too inefficient in practice

Peterson’s Reconsidered

125

• Assumes that LOAD and STORE
instructions are atomic
• Not guaranteed on a real processor
• Also not guaranteed by C, Java, Python,

…

Peterson’s Reconsidered More

126

• Suppose x is a 64-bit integer
• Suppose you have a 32-bit CPU
• Then ”x = 0” requires 2 stores
o because x occupies 2 words
• Similarly, reading x requires 2 loads
• Same is true is x is a 32-bit integer but x is

not aligned on a word boundary
o For example, address of x is 0x12340002

Non-atomic load/store example

127

• Suppose x is a 32 bit word @ 0x12340002
• Suppose you have 2 threads, T1 and T2
o T1: x = 0xFFFFFFFF (i.e., x = −1)
o T2: x = 0
• After T1 and T2 are done, x may be
o 0, 0xFFFFFFFF, 0xFFFF0000, or 0x0000FFFF
• Because of this, programming languages

will typically leave the outcome of
concurrent write operations to a variable
undefined.

Concurrent writing

128

• Suppose x is a 32 bit word @ 0x12340002
• Suppose x is initially 0
• Suppose you have 2 threads, T1 and T2
o T1: x = 0xFFFFFFFF (i.e., x = −1)
o T2: y = x (i.e., T2 reads x)
• After T1 and T2 are done, y may contain
o 0, 0xFFFFFFFF, 0xFFFF0000, or 0x0000FFFF
• Because of this, programming languages

will typically leave the outcome of
concurrent read and write operations to a
variable undefined.

Concurrent reading

129

• When two threads access the same variable
• And at least one is a STORE
• Then the semantics of the outcome is undefined

Data Race

130

• sequential turn, flags
• ensures that loads/stores are atomic
• that is, concurrent operations appear to be

executed sequentially
• This is called “sequential consistency”
For example
• Shared variable x contains 3
• Thread A stores 4 into x
• Thread B loads x
o With atomic load/store operations, B will read either 3 or 4
o With modern CPUs/compilers, the value that B reads is

undefined

Harmony “sequential” statement

131

• Java has a similar notion:
o volatile int x ;
• Not to be confused with the same

keyword in C and C++ though…
• Loading/storing volatile (sequentially

consistent) variables is more expensive
than loading/storing ordinary variables
o because it restricts CPU and/or compiler

optimizations

Sequential consistency

132

So, what do we do?

133

• Machine instructions that do multiple shared
memory accesses atomically

• e.g., TestAndSet s
o sets s to True
o returns old value of s
• i.e., does the following:
- LOAD r0, s # load variable s into register r0
- STORE s, 1 # store TRUE in variable s

• Entire operation is atomic
o other machine instructions cannot interleave

Enter Interlock Instructions

134

• If x is a shared variable, ?x is the address of x
• If p is a shared variable and p == ?x, then we say

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

137

• If x is a shared variable, ?x is the address of x
• If p is a shared variable and p == ?x, then we say

that p is a pointer to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

138

Where?
There!

• For example:
lock1 = False
lock2 = True
r1 = test_and_set(?lock1)
r2 = test_and_set(?lock2)
assert lock1 and lock2
assert (not r1) and r2

Test-and-Set in Harmony

139

Recall: bad lock implementation

140

Good implementation (“spinlock”)

141

Best understood as “baton passing”
o At most one thread, or 𝑠ℎ𝑎𝑟𝑒𝑑, can “hold” False

“Locks”

149

Specifying a lock

150

• We say that a lock is held or owned by a thread
o implicit “ghost” state
o nonetheless can be used for reasoning

• Two important invariants:
1. 𝑇@𝑐𝑠 ⇒ 𝑇 holds the lock
2. at most one thread can hold the lock

Most systems (incl. “standard” Harmony
modules) do not keep track of who holds a
particular lock, if anybody

“Ghost” state

151

Implementing a lock
(just one way of doing so)

152

specification of the CPU’s
test_and_set functionality

must also use an atomic
STORE instruction

Specification vs Implementation

153

Specification: describes what an abstraction does
Implementation: describes how

Using a lock for a critical section

154

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing

155

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is

trying to obtain a lock spinlock
o when there is pre-emption?

Spinlocks and Time Sharing

156

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is

trying to obtain a lock spinlock
o when there is pre-emption?
- can cause delays and waste of CPU cycles while

a thread is trying to obtain a spinlock

Spinlocks and Time Sharing

157

• Harmony allows contexts to be saved
and restored (i.e., context switch)

o r = stop p
- stops the current thread and stores context in !p
o go (!p) r
- adds a thread with the given context to the bag

of threads. Thread resumes from stop
expression, returning r

Context switching in Harmony

158

Locks using stop and go

159

.acquired: boolean

.suspended: queue of contexts

Locks using stop and go

160

Similar to a Linux “futex”: if there is no contention
(hopefully the common case) acquire() and release() are
cheap. If there is contention, they involve a context switch.

• “synch” is the (default) module that has
the specification of a lock
• “synchS” is the module that has the
stop/go version of lock
• you can select which one you want:

harmony -m synch=synchS x.hny

• “synch” tends to be faster than “synchS”
- smaller state graph

Choosing modules in Harmony

161

Atomic section ≠ Critical Section

162

Atomic Section Critical Section
only one thread can execute multiple threads can execute

concurrently, just not within a
critical section

rare programming language
paradigm

ubiquitous: locks available in
many mainstream
programming languages

good for specifying interlock
instructions

good for implementing
concurrent data structures

• Each data structure maintains some consistency
property
o e.g., in a linked list, there is a head, a tail, a list of

nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

Data Structure consistency

163

• Each data structure maintains some consistency
property
o e.g., in a linked list, there is a head, a tail, a list of

nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

• You can assume the property holds right after
obtaining the lock
• You must make sure the property holds again

right before releasing the lock

Using locks

164

• Each data structure maintains some consistency
property
• Invariant:
o lock not held ⟹ data structure consistent
• Or equivalently:
o data structure inconsistent ⟹ lock held

Using locks

165

• q = queue.Queue(): initialize a new queue
• queue.put(q, v): add v to the tail of queue q
• v = queue.get(q): returns None if q is empty or

v if v was at the head of the queue

Building a Concurrent Queue

166

Specifying a concurrent queue

167

Example of using a queue

168

enqueue v onto q

dequeue and check

create queue

Specifying a concurrent queue

169

not a good implementation because operations are O(n)

Queue implementation, v1

170

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Figure 11.3 in Harmony book

Queue implementation, v1

171

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation

Queue implementation, v1

172

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

empty queue

Queue implementation, v1

173

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

allocate node

Queue implementation, v1

174

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

Queue implementation, v1

175

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

the hard stuff

Queue implementation, v1

176

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

release lock

the hard stuff

Queue implementation, v1

177

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Queue implementation, v1

178

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff

Queue implementation, v1

179

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

malloc’d memory must
be explicitly released

(cf. C)

• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

180

• Answer: all important
o any resource that needs scheduling
-CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
- Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

181
Good performance is critical!

Concurrent queue v2: 2 locks

182

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

Concurrent queue v2: 2 locks

183

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

atomically q->tail->next = node

Concurrent queue v2: 2 locks

184

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

Concurrent queue v2: 2 locks

185

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent
enqueue and dequeue operations!
è more concurrency è faster

Concurrent queue v2: 2 locks

186

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent
enqueue and dequeue operations!
è more concurrency è faster

BUT: data race on dummyànext when queue is empty

• The two-lock queue is an example of a data
structure with finer-grained locking
• A global lock is easy, but limits concurrency
• Fine-grained or local locking can improve

concurrency, but tends to be trickier to get right

Global vs. Local Locks

187

Sorted Linked List with Lock per Node

188

.value

.next
.value
.next

∞
.next None

−∞
.next

empty list

Sorted Linked List with Lock per Node

189

.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two
consecutive nodes before and after such that
before → 𝑣𝑎𝑙𝑢𝑒 < 𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟 → 𝑣𝑎𝑙𝑢𝑒

Sorted Linked List with Lock per Node

190

.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two
consecutive nodes before and after such that
before → 𝑣𝑎𝑙𝑢𝑒 < 𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟 → 𝑣𝑎𝑙𝑢𝑒

Hand-over hand locking
(good for data structures
without cycles)

Sorted Linked List with Lock per Node

191

Sorted Linked List with Lock per Node

192

Multiple threads can access the
list simultaneously, but they
can’t overtake one another

Testing a Concurrent Queue?

193

Testing a Concurrent Queue?

194

• ad hoc
• unsystematic

• Sequential case
o try all “sequences” of 1 operation
- put or get
o try all sequences of 2 operations
- put+put, put+get, get+put, get+get, …
o try all sequences of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test

against implementation with running test
against the sequential specification

Systematic Testing

195

• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test

against concurrent implementation with
running test against the concurrent
specification

Systematic Testing

196

Life of an atomic operation

197

process invokes
operation

process resumes
with result

operation happens
atomically

TIME

Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

Concurrency and Overlap

198

Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (afterwards)
3. customer Y is served a burger
4. customer X is served a burger (afterwards)

We’ve all seen this happen. It’s a matter of
how things get scheduled!

Concurrency and Overlap

199

• One operation: order a burger
o result: a burger (at some later time)
• Semantics: the burger manifests itself

atomically sometime during the operation
• Atomically: no two manifestations overlap
• It’s easier to specify something when you don’t

have to worry about overlap
o i.e., you can simply give a sequential specification
• Allows many implementations

Specification

200

• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X receives burger

Implementation?

201

1

2

X:

Y:

• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X receives burger

Implementation?

202

1

2

X:

Y:

• can’t happen if Y orders burger after X receives burger
• but if operations overlap, any ordering can happen…

Correct Behaviors

203

put(1)

get() à ?

TIME

(1)

Correct Behaviors

204

put(1)

get() à 1

TIME

(1)

Correct Behaviors

205

put(1)

get() à 1

TIME

put(1)

get() à ?

(1)

(2)

Correct Behaviors

206

put(1)

get() à 1

TIME

put(1)

get() à None

(1)

(2)

Correct Behaviors

207

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à ???

(1)

(2)

(3)

Correct Behaviors

208

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à None

(1)

(2)

(3)

Correct Behaviors

209

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à 1

(1)

(2)

(3)

• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test

against concurrent implementation with
running test against the concurrent
specification

Testing Concurrent Objects

210

Concurrent queue test program

211

Behavior (NOPS=2: 1 get, 1 put)

212

• The first command outputs the behavior of
running the test program against the
specification in file queue4.hfa
• The second command runs the test program

against the implementation and checks if its
behavior matches that stored in queue4.hfa

Testing: comparing behaviors

213

