
Deadlock
Chapter 32 in “Three Easy Steps”

Chapter 19 in Harmony Book

CS 4410
Operating Systems

The slides are the product of many rounds of teaching CS 4410
by Professors Agarwal, Alvisi, Bracy, George, Schneider, Sirer, Van Renesse.

Pi: do forever
acquire(left(i));
acquire(right(i));
eat
release(left(i));
release(right(i));

end

Dining Philosophers [Dijkstra 68]

2

0

1

2
3

4

1

4

0

3

2

right(i): i+1 mod 5
left(i): i

Dining Philosophers in Harmony

3

Dining Philosophers in Harmony

4

Starvation: Process waits forever

Deadlock: A set of processes exists, where each is
blocked and can become unblocked only by
actions of another process in the set.
• Deadlock implies Starvation (but not vice versa)

• Starvation often tied to fairness: A process is not
forever blocked awaiting a condition that (i) becomes
continuously true or (ii) infinitely-often becomes true.

Testing for starvation or deadlock is difficult in practice

Problematic Emergent Properties

5

Example (initially in1 = in2 = False):
in1 = True; await not in2; in1 = False
//
in2 := True; await not in1; in2 = False

Example (initially lk1 = lk2 = released):
acquire(lk1); acquire(lk2); release(lk2); release(lk1);
//
acquire(lk2); acquire(lk1); release(lk1); release(lk2);

More Examples of Deadlock

6

• Set of resources requiring “exclusive” access
• Might be “k-exclusive access” if resource has capacity for k
• Examples: buffers, packets, I/O devices, processors, …

• Protocol to access a resource causes blocking:
• If resource is free, then access is granted; process proceeds
• If resource is in use, then process blocks
- Use resource
- Release resource

When is deadlock possible?

System Model

7

1. Mutual Exclusion. Acquire can block invoker

2. Hold & wait. A process can be blocked while
holding resources

3. No preemption. Allocated resources cannot
be reclaimed. Explicit release operation
needed

4. Circular waits are possible
Let p à q denote “p waits for q to release a resource”. Then

P1 à P2 à … à Pn à P1

Necessary Conditions for Deadlock

8

Edward Coffman 1971

• Deadlock prevention: Ensure that a necessary
condition cannot hold

• Deadlock avoidance: System does not allocate
resources that will lead to a deadlock

• Deadlock detection: Allow system to deadlock;
detect it; recover

Deadlock is Undesirable

9

#1: Eliminate mutual exclusion / bounded
resources:
• Make resources sharable without locks
-Harmony book Chapter 23 has examples of non-

blocking data structures
• Have sufficient resources available, so

acquire never delays
-E.g., unbounded queue, or simply make sure

bounded queue is “large enough”

Deadlock Prevention: Negate 1

10

#2: Eliminate hold and wait
Don’t hold some resources when waiting for others.
• Re-write code:

• Assuming bar does not access shared variables and
does not need the lock, are these the same?

Deadlock Prevention: Negate 2

11

def foo():
acquire(?mutex);
doSomeStuff();
bar();
doOtherStuff();
release(?mutex);

def foo():
acquire(?mutex);
doSomeStuff();
release(?mutex);
bar();
acquire(?mutex);
doOtherStuff();
release(?mutex);

#2: Eliminate hold and wait
Don’t hold some resources when waiting for others.
• Re-write code:

• Answer: no. The state that mutex protects may change between
doSomeStuff and doOtherStuff in code on the right.

Deadlock Prevention: Negate 2

12

def foo():
acquire(?mutex);
doSomeStuff();
bar();
doOtherStuff();
release(?mutex);

def foo():
acquire(?mutex);
doSomeStuff();
release(?mutex);
bar();
acquire(?mutex);
doOtherStuff();
release(?mutex);

#2: Eliminate hold and wait
Don’t hold some resources when waiting for others.
• Re-write code

• Another approach: request all resources a priori
-Problems:
- Processes don’t know what they need ahead of time
- No mechanism to request all resources at the same time
- Starvation (if waiting on many popular resources)
- Low utilization (need resource only for a bit)

Deadlock Prevention: Negate 2

13

#3: Allow preemption

Requires mechanism to save / restore resource state:
multiplexing vs undo/redo

- Examples of multiplexing:
• processor registers (contexts)
• Regions of memory (pages)

- Examples of undo/redo
• Database transaction processing

Deadlock Prevention: Negate 3

14

#4: Eliminate circular waits.

Let R = {R1, R2, … Rn} be the set of resource types.
Let (R , <) be a non-symmetric relation:
- not r < r [irreflexive]
- if r < s and s < t then r < t [transitive]
- not r < s and s < r [non-symmetric]
- for every r and s (r s): r < s or s < r [total order]

Rule: Request resources in increasing order by <
(All resources from type Ri must be requested together)

Rule: To request resources of type Ri, first release all
resources from type Rj where Ri < Rj.

Deadlock Prevention: Negate 4

15

=/

Thm: Total order resource allocation avoids
circular waits

Proof: By contradiction. Assume a circular wait exists
P1 à P2 à P3 à … à Pn à P1.

P1 requesting R1 held by P2.
P2 requesting R2 held by P3. (So R1 < R2 holds)
…

Conclude: R1 < R2, R2 < R3, …, Rn < R1
By transitivity: R1 < R1. A contradiction!

Why < Rules Work

16

Hierarchical Resource Allocation
Every resource is associated with a level.
• Rule H1: All resources from a given level must be

acquired using a single request.
• Rule H2: After acquiring from level Lj must not acquire

from Li where i < j
• Rule H3: May not acquire from Li unless already

released from Lj where j > i.

Example of allowed sequence:
1. acquire(W@L1, X@L1)
2. acquire(Y@L3)
3. release(Y@L3)
4. acquire(Z@L2)

Havender’s Scheme (OS/360)

17

L1
L2

Ln

ac
qu

ire

re
le

as
e

Pi: do forever
acquire(F(i));
acquire(G(i));
eat
release(F(i));
release(G(i));

end

Dining Philosophers (Again)

18

F(i): min(i, i+1 mod 5)
G(i): max(i, i+1 mod 5)

0

1

2
3

4

1

4

0

3

2

Ordering Resources in Harmony

19

or

Simultaneous Acquisition in Harmony

20

wait for both forks and
then grab them both

release both forks

Simultaneous Acquisition in Harmony

21

wait for both forks and
then grab them both

release both forks

there are better ways than
doing it this way but I’m trying
to make a point about waiting

for multiple conditions…

Simultaneous Acquisition in Harmony

22

wait for both forks to
be available

Simultaneous Acquisition in Harmony

23

Wait for left fork, then
wait for right fork.
Wouldn’t this be just
as good?

Simultaneous Acquisition in Harmony

24

Wait for left fork, then
wait for right fork.
Wouldn’t this be just
as good?

NO!

(run through harmony if
you don’t believe me)

Create a Wait-For Graph
• 1 Node per Process
• 1 Outgoing Edge per Waiting Process, P

(from P to the process it’s waiting for)

Note: graph holds for a single instant in time

Cycle in graph indicates deadlock

Deadlock Detection

25

31

2

Reduction Algorithm:
Find a node with no outgoing edges
• Erase node
• Erase any edges coming into it
• Repeat until no such node

Intuition: Deleted node is for process that is not
waiting. It will eventually finish and release its
resources, so any process waiting for those resources
will longer be waiting.

Erase whole graph ⬌ graph has no cycles
Graph remains ⬌ deadlock

Testing for cycles (= deadlock)

26

Graph can be fully reduced, hence there was no
deadlock at the time the graph was drawn.
(Obviously, things could change later!)

Graph Reduction: Example 1

27

8

6 5

0

3

49

10

11 7

12

1

2

Find node w/o outgoing edges
Erase node
Erase edges coming into it

No node with no outgoing edges…
Irreducible graph, contains a cycle

(only some processes are in the cycle)
➛ deadlock

Graph Reduction: Example 2

28

3

10

11

7

12

Does choice of node for reduction matter?

Answer: No.
Explanation: an unchosen candidate at one
step remains a candidate for later steps.
Eventually—regardless of order—every node
will be reduced (if there’s no deadlock).

Question:

29

Suppose no deadlock detected at time T.
Can we infer about a later time T+x?

Answer: Nothing.
Explanation: The very next step could be to run
some process that will request a resource…

… establishing a cyclic wait
… and causing deadlock

Question:

30

• Track resource allocation (who has what)
• Track pending requests (who’s waiting for what)
Maintain a wait-for graph.

When to run graph reduction?
• Whenever a request is blocked?
• Periodically?
• Once CPU utilization drops below a threshold?

Implementing Deadlock Detection

31

Blue screen & reboot?

Kill one/all deadlocked processes
• Pick a victim
• Terminate
• Repeat if needed

Preempt resource/processes till deadlock broken
• Pick a victim (# resources held, execution time)
• Rollback (partial or total, not always possible)

Deadlock Recovery

32

How do cars do it?
•Try not to block an intersection
•Don’t drive into the intersection if you see that

you might get stuck there

Why does this work?
•Prevents a wait-for relationship
•Cars won’t take up a resource if they see they

won’t be able to acquire the next one…

Deadlock Avoidance

33

state: allocation to each process
safe state: a state from which some execution is
possible that does not cause deadlock

• Requires knowing max allocation for each process
• Check that
- Exists sequence P1 P2 … Pn of processes where:

Forall i where 1 ≤ i≤ n:
Pi can be satisfied by Avail + resources held by P1 … Pi-1.

Assumes no synchronization between processes,
except for resource requests

Deadlock Avoidance

34

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Safe State Example

35

max
need

current
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

Is this a safe state (i.e, is
there a sequence of granting
requests that will work
without deadlock)?

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Current state is safe because a safe sequence exists: [p1, p0, p2]
- p1 can complete with remaining resources
- p0 can complete with remaining+p1
- p2 can complete with remaining+p1+p0

What if p2 requests 1 drive? Grant or not?

Safe State Example

36

max
need

current
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Safe State Example

37

max
need

current
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 3 6

2 drives remain

Is this state safe? (Is there a sequence of requests that works?)

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Safe State Example

38

max
need

current
usage

could still
ask for

p0 10 5 5
p1 0 0 0
p2 9 3 6

4 drives remain

Is this state safe? (Is there a sequence of requests that works?)

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Safe State Example

39

max
need

current
usage

could still
ask for

p0 10 5 5
p1 0 0 0
p2 9 3 6

4 drives remain

Is this state safe? (Is there a sequence of requests that works?)

(potentially) STUCK…
(non-terminating state)

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Current state is safe because a safe sequence exists: [p1, p0, p2]
- p1 can complete with remaining resources
- p0 can complete with remaining+p1
- p2 can complete with remaining+p1+p0

What if p2 requests 1 drive? Grant or not?

Safe State Example

40

max
need

current
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

Suppose: 12 tape drives and 3 processes: p0, p1, and p2

Current state is safe because a safe sequence exists: [p1, p0, p2]
- p1 can complete with remaining resources
- p0 can complete with remaining+p1
- p2 can complete with remaining+p1+p0

What if p2 requests 1 drive? Grant or not? NO (block or deny)

Safe State Example

41

max
need

current
usage

could still
ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

• from 10,000 feet:
• Process declares its worst-case needs, asks

for what it “really” needs, a little at a time
• Algorithm decides when to grant requests
- Build a graph assuming request granted
- Reducible? yes: grant request, no: wait

Problems:
• Fixed number of processes
•Need worst-case needs ahead of time
• Expensive

à not used much practice

Banker’s Algorithm

42

Dijkstra 1977

