Journaling and

Log-Structured File Systems
(Chapters 42, 43)

CS 4410
Operating Systems

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[R. Agarwal, L. Alvisi, A. Bracy, M. George, F.B. Schneider, E. Sirer, R. Van Renesse]

Fault-tolerant Disk Update

Problem: many file system operations
required multiple disk updates. What if there
IS a crash half-way?

* Idea: Protocol where performing a single disk
write causes multiple disk writes to take effect.

* Implementation: New on-disk data structure
(“journal”) with a sequence of blocks containing

updates plus

Journal-Update Protocol

write x; write y; write z

implemented by

— Append to journal: TxBegin, x,V, z
— Wait for completion of disk writes.
- Append to journal: TXxEnd

— Wait for completion of disk write.
- Write x,y, z to final locations in file system

called checkpoint step

TxBegin

Journal-Update Protocol

write x; write y; write z

implemented by

— Append to journal: TxBegin, x,V, z
— Wait for completion of disk writes. | why?
- Append to journal: TXxEnd

— Wait for completion of disk write.

- Write x,y, z to final locations in file system

TxBegin

What if Crash?

write x; write y; write z

implemented by

— Append to journal: TxBegin, x,V, z

— Wait for completion of disk writes.

- Append to journal: TXxEnd

— Wait for completion of disk write. ———————————Crash!
- Write x,y, z to final locations in file system.

TxBegin

Recovery protocol for TxBegin ... TXEnd:

— if TXEnd present then redo writes to final locations following TxBegin
— elseignorejournal entries following TxBegin .

Full-Journal Recovery Protocol

* Replay journal from start, writing blocks as
indicated by checkpoint steps.

Infinite Journal =2 Finite Journal:

* introduce journal super block (JSB) as first entry in
journal: JSB gives start / end entries of journal.

* view journal as a circular log

* delete journal entry and update JSB once writes in
checkpoint step complete

end

strt

Performance Optimizations

* Eliminate disk write of TxEnd record.

* Compute checksum of xxx in “TxBegin xxx TxEnd”

* Include checksum TxBegin.

* Recovery checks whether all log entries present.
* Eliminate disk write of xxx when data block

e Ste
e Ste
e Ste
e Ste

0 1: Write data block to final disk location
0 2: Await completion
0 3: Write meta-data blocks to journal

0 4: Await completion

Log-Structured File Systems

Technological drivers:

» System memories are getting larger

* Larger disk cache
* Reads mostly serviced by cache
* Traffic to disk mostly writes.

» Sequential disk access performs better.

 Avoid seeks for even better performance
 Better wear leveling on SSDs!

Idea: Buffer writes and store as single log
entry on disk. Disk becomes one long log!

Storing Data on Disk

B=:?: A9 b[O]:A5
Djo| Dj1| Dj2| Djs|b2lA2| Dko
b[3]:A3
A0 A1 A2 A3 Inode j A5 Inode k

» Updates to file j and k are buffered.
* Inode for a file points to log entry for data
* An entire segment is written at once.

How to Find Inode on Disk

In UFS: F: inode nbr = location on disk
In LFS: location of inode on disk changes...

LFS: Maintain inode Map in pieces and store updated

piece on disk.

* For write performance: Put piece(s) at end of segment

* Checkpoint Region: Points to all inode map pieces and is
updated every 30 secs. Located at fixed disk address. Also

buffered in memory

Imap bE[O]:AO m[k]:A1

Ll D | Ikl | imap
CR

0 AO A1 A2

10

To Read a File in LFS

* [Load checkpoint region CR into memory]

* [Copy inode map into memory]

* Read appropriate inode from disk if needed
* Read appropriate file (dir or data) block

[...] =step not needed if information already cached.

imap b[0]A0 | MIKIAT
. NI D | Ik | imap
CR

11

Garbage Collection

Eventually disk will fill. But many blocks
(“garbage”) not reachable via CR, because they
were overwritten.

bE[O]:AO b[(g)]:A4
I[K] DO | I[K]

AO (garbage) A4
b=[0]:AO b[O]EAO
DO | Ik D1 |PlIA4
I[K]

A0 (garbage) A4

LFS Cleaner

Protocol:

1. readsegment;

2. identify garbage blocks within;

3. copy non-garbage blocks to new segment;
4. append new segment to disk log

Each segment includes segment summary block that
includes for each data block D in segment:

— inode number

— Offset in the file for that inode
Retrieve the block number for that <inode, offset> from
LFS to reveal if Dis live (=) or it is garbage (=!).

13

Crash Recovery
LFS writes to disk: CR and segment.

After a crash:
* Find most recent consistent CR (see below)

* Roll forward by reading next segment for updates.

Crash-resistant atomic CR update:
* Two copies of CR: at start and end of disk.
* Updates alternate between them.
e Each CR has timestamp ts(CR,start) at start and
ts(CR,end) at end.

— CR consistent if ts(CR,start)=ts(CR,end)
* Use consistent CR with largest timestamp

14

