
File Systems

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, F. Schneider, E. Sirer, R. Van Renesse]



Process Memory? (why is this a bad idea?)

Where shall we store our data?

2



Long-term Information Storage Needs
• large amounts of information
• information must survive processes
• need concurrent access by multiple processes

Solution: the File System Abstraction
• Presents applications w/ persistent, named data
• Two main components:

• Files
• Directories

File Systems 101

3



• File: a named collection of data
• has two parts
• data – what a user or application puts in it
- array of untyped bytes
• metadata – information added and managed 

by the OS
- size, owner, security info, modification time

The File Abstraction

4



I/O systems are accessed 
through a series of 
layered abstractions

The abstraction stack

File System API 
& Performance

Device 
Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver
Memory-mapped I/O,

DMA, Interrupts
Physical Device

File System API 

& Performance

Device 

Access



The Block Cache

File System API 
& Performance

Device 
Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver
Memory-mapped I/O, 

DMA, Interrupts
Physical Device

• a cache for the disk
• caches recently read blocks
• buffers recently written blocks
• serves as synchronization point 

(ensures a block is only fetched 
once)



More Layers

File System API 
& Performance

Device 
Access

• allows data to be read or 
written in fixed-sized blocks
• uniform interface to 

disparate devices

• translate between OS 
abstractions and hw-
specific details of I/O 
devices
• Control registers, bulk data 

transfer, OS notifications

Application

Library

File System

Block Cache

Block Device Interface

Device Driver
Memory-mapped I/O,

DMA, Interrupts
Physical Device



1. Files are abstracted unit of information 
2. Don’t care exactly where on disk the file is

➜ Files have human readable names
• file given name upon creation
• use the name to access the file

First things first: Name the File!

8



Naming Conventions
• Some things OS dependent: 

Windows not case sensitive, UNIX is 
• Some things common:

Usually ok up to 255 characters

File Extensions, OS dependent:
• Windows: 

- attaches meaning to extensions
- associates applications to extensions

• UNIX:
- extensions not enforced by OS
- Some apps might insist upon them (.c, .h, .o, .s, for C compiler)

Name + Extension

9



Directory: provides names for files
• a list of human readable names
• a mapping from each name to a specific 

underlying file or directory

Directory

10

directory index 
structure

Storage 
Block

File 
Number

871
music  320
work    219
foo.txt  871

File 
Name:

foo.txt



Absolute: path of file from the root directory
/home/ada/projects/babbage.txt

Relative: path from the working directory
projects/babbage.txt

(current working dir stored in process’ PCB)

2 special entries in each UNIX directory:
“.” current dir
“..” for parent

To access a file:
• Go to the folder where file resides    —OR—
• Specify the path where the file is

Path Names

11



Directories

12

music  320
work    219
foo.txt  871

File 830
� ß/home/tomß

mike 682
ada    818
tom 830

File 158
� ß/homeß

File 871
� ß/home/tom/foo.txtß

bin    737
usr     924
home 158

File 2
� ß/ß

The quick 
brown fox 
jumped 
over the 
lazy dog.

all files
OS uses path name to find directory
Example: /home/tom/foo.txt

Directory: 
maps file name to attributes & location
2 options: 
• directory stores attributes
• files’ attributes stored elsewhere



• Create a file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file
• Truncate a file

Basic File System Operations

13



Performance: despite limitations of disks
• leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse workloads, 
not just FS for X
Persistence: maintain/update user data + internal data 
structures on persistent storage devices
Reliability: must store data for long periods of time, 
despite OS crashes or HW malfunctions
Security: file should have protection mechanisms

Challenges for File System Designers

14



Directories
• file name ➜ file number  

Index structures
• file number ➜ block

Free space maps
• find a free block; better: find a free block nearby

Locality heuristics
• policies enabled by above mechanisms
- group directories
- make writes sequential
- defragment

Implementation Basics

15



Most files are small
• need strong support for small files
• block size can’t be too big

Some files are very large
• must allow large files
• large file access should be reasonably efficient

File System Properties

16



File System Layout

17

File System is stored on disks
• disk can be divided into 1 or more partitions
• Sector 0 of disk called Master Boot Record
• end of MBR: partition table (partitions’ start & end addrs)

First block of each partition has boot block
• loaded by MBR and executed on boot

entire disk
PARTITION #4PARTITION #2PARTITION #1 PARTITION #3

PARTITION
TABLE

MBR

Root DirFree Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories



Files can be allocated in different ways:
• Contiguous allocation

All bytes together, in order

• Linked Structure
Each block points to the next block

• Indexed Structure
Index block points to many other blocks

Which is best?
• For sequential access? Random access?
• Large files? Small files? Mixed?

Storing Files

18



All bytes together, in order
+ Simple:  state required per file: start block & size
+ Efficient:  entire file can be read with one seek
– Fragmentation:  external is bigger problem
– Usability: user needs to know size of file at time of creation

Used in CD-ROMs, DVDs

Contiguous Allocation

19

file1 file2 file3 file4 file5



Each file is stored as linked list of blocks
• First word of each block points to next block
• Rest of disk block is file data

+ Space Utilization:  no space lost to external fragmentation
+ Simple:  only need to find 1st block of each file
– Performance:  random access is slow
– Implementation:  blocks mix meta-data and data

Linked List Allocation

20

File 
block 

0

next

File 
block 

1

next

File 
block 

2

next

File 
block 

3

next

File 
block 

4

next

File A

Physical
Block 7 8 33 17 4



Microsoft File Allocation Table
• originally: MS-DOS, early version of Windows 
• today: still widely used (e.g., CD-ROMs, thumb 

drives, camera cards)
File table:
• Linear map of all blocks on disk
• Each file a linked list of blocks

File Allocation Table (FAT) FS

21

[late 70’s]

data

next

data

next

data

next

decoupled 

physically

data



Data BlocksFAT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

File 9 Block 3

File 9

File 12

File 12 Block 1
File 9 Block 4

File 9 Block 0
File 9 Block 1
File 9 Block 2
File 12 Block 0

FAT File System

22

• 1 entry per block
• EOF for last block
• 0 indicates free block
• directory entry maps 
name to FAT index

Directory
bart.txt 9

maggie.txt 12

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0



Folder: a file with 32-byte entries
Each Entry:
• 8 byte name + 3 byte extension (ASCII)
• creation date and time
• last modification date and time
• first block in the file (index into FAT)
• size of the file
• Long and Unicode file names take up 

multiple entries

FAT Directory Structure

23

music  320
work    219
foo.txt  871



+ Simple: state required per file: start block only
+ Widely supported
+ No external fragmentation
+ block used only for data

How is FAT Good?

24



How is FAT Bad?

25

• Poor locality
• Many file seeks unless entire FAT in memory:
Example: 1TB (240 bytes) disk, 4KB (212) block 
size, FAT has 256 million (228) entries (!) 
4 bytes per entry ➜ 1GB (230) of main 
memory required for FS (a sizeable overhead)

• Poor random access
• Limited metadata  
• Limited access control
• Limitations on volume and file size
• No support for reliability techniques



Tree-based, multi-level index

Unix File System (UFS)

26



Identifies file system’s key parameters:
• type
• block size
• inode array location and size
• location of free list

UFS Superblock

27

block number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blocks:

Remaining blocksi-node 
blocks

super
block



• inode array
• inode
-Metadata
- 12 (or so) data pointers
- 3 indirect pointers

UFS I-Nodes

28

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

block number 0 1 2 3 4 5 6 7

blocks:

Remaining blocksi-node blockssuperblock

. . .



UFS: Index Structures

29

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer



UFS: Index Structures

30

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

12

Assume: blocks are 4K,
block references are 4 bytes

12x4K=48K directly reachable 
from the inode

1K
1K

1K

1K 1K

1K

1K

1K
n=1:  4MB

n=2: 4GB

n=3: 4TB



• Type
- ordinary file
- directory
- symbolic link
- special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and igroupd)
• Protection bits
• Times: creation, last accessed, 

last modified

What else is in an inode?

31

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

File 
Metadata



1. Tree Structure
• efficiently find any block of a file

2. High Degree (or fan out)
• minimizes number of seeks
• supports sequential reads & writes

3. Fixed Structure
• implementation simplicity

4. Asymmetric
• not all data blocks are at the same level 
• supports large files
• small files don’t pay large overheads

4 Characteristics of UFS

32



Inode Array

File Metadata

NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL

Inode
Data

Blocks

DP
DP

Direct Pointer

Direct Pointer

Small Files in UFS

33

What if fixed 3 levels instead? 
• 4 KB file consumes ~16 KB

(4 KB data + 3 levels of 4KB 
indirect blocks)

• reading file requires reading 5 
blocks to traverse tree

all blocks 
reached via 

direct 
pointers



Sparse Files in UFS

34

File Metadata

Dbl. Indirect Ptr.

Inode

Data
Blocks

Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

NIL
NIL
NIL
NIL
NIL

Direct Pointer
NIL
NIL
NIL

NIL
NIL
NIL
NIL

NIL

File size (ls -lgGh): 1.1 GB
Space consumed (du -hs):  16 KB

Read from hole: 0-filled buffer created
Write to hole: storage blocks for data 

+ required indirect blocks allocated

Example:
2 x 4 KB blocks: 1 @ offset 0

1 @ offset 230



Read & Open:
(1) inode #2  (root always has inumber 2), find root’s blocknum (912)
(2) root directory (in block 912), find foo’s inumber (31)
(3) inode #31, find foo’s blocknum (194)
(4) foo (in block 194), find bar’s inumber (73) 
(5) inode #73, find bar’s blocknum (991)
(6) bar (in block 991), find baz’s inumber (40)
(7) inode #40, find data blocks (302, 913, 301)
(8) data blocks (302, 913, 301)

UFS: Steps to reading /foo/bar/baz

194

…

301 302

…

912 913

…

991

baz 40
ni 80
nit 87

nd I
remembe
r.I do
and I

bin 47
foo 31
usr 98

fie 23
far 81
bar 73

under
stand
.

I hear
and I
forget.
I see a

912 194 302
913
301

991

2 31 40 73
inodes data blocks

1 23 4 8 8857 6

Caching often allows 
first few steps to be 

skipped



• List of blocks not in use
• How to maintain?

1. linked list of free blocks
- inefficient (why?)

2. linked list of metadata blocks that in turn 
point to free blocks

- simple and efficient
3. bitmap
- good for contiguous allocation

Free List

36



Originally: array of 16 byte entries
• 14 byte file name
• 2 byte i-node number

Now: linked lists.  Each entry contains:
• 4-byte inode number
• Length of name
• Name (UTF8 or some other Unicode encoding)

First entry is “.”, points to self
Second entry is “..”, points to parent inode

UFS Directory Structure

37

music  320
work    219
foo.txt  871



Creating and deleting files
• creat(): creates

1. a new file with some metadata; and
2. a name for the file in a directory
• link() creates a hard link–a new name for the 

same underlying file, and increments link count 
in inode
• unlink() removes a name for a file from its 

directory and decrements link count in inode. If 
last link, file itself and resources it held are 
deleted

File System API: Creation

38



• a mapping from each name to a specific 
underlying file or directory (hard link)

• a soft link is instead a mapping from a file 
name to another file name
- it’s simply a file that contains the name of 

another file
- use as alias: a soft link that continues to remain 

valid when the (path of)  the target file name 
changes

Hard & Soft Links

39



System crashes before modified files written back?
• Leads to inconsistency in FS
• fsck (UNIX) & scandisk (Windows) check FS 

consistency

Algorithm:
• Build table with info about each block
- initially each block is unknown except superblock
• Scan through the inodes and the freelist
- Keep track in the table
- If block already in table, note error
• Finally, see if all blocks have been visited

File System Consistency

40



Inconsistent FS Examples

41

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0
0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

in useConsistent 

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

in useMissing Block 2
(add it to the free list) free list

Duplicate Block 4 in Free List 
(rebuild free list)

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0
0 0 1 0 2 0 0 0 0 1 1 0 0 0 1 1 free list

in use

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 2 1 1 1 0 0 1 1 1 0 0
0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

in use
Duplicate Block 4 in Data
List (copy block and add it to 
one file)



Use a per-file table instead of per-block
Parse entire directory structure, start at root
• Increment counter for each file you encounter
• This value can be >1 due to hard links
• Symbolic links are ignored

Compare table counts w/link counts in i-node
• If i-node count > our directory count  (wastes space)
• If i-node count < our directory count (catastrophic)

Check Directory System

42


