File Systems

CS 4410 Operating Systems

Where shall we store our data?

Process Memory? (why is this a bad idea?)

File Systems 101

Long-term Information Storage Needs

- large amounts of information
- information must survive processes
- need concurrent access by multiple processes

Solution: the File System Abstraction

- Presents applications w/ persistent, named data
- Two main components:
 - Files
 - Directories

The File Abstraction

- File: a named collection of data
- has two parts
 - data what a user or application puts in it
 - array of untyped bytes
 - metadata information added and managed by the OS
 - size, owner, security info, modification time

The abstraction stack

I/O systems are accessed through a series of layered abstractions

File System API

8 Performance

Device) Access **Application**

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O, DMA, Interrupts

Physical Device

The Block Cache

- a cache for the disk
- caches recently read blocks
- buffers recently written blocks
- serves as synchronization point (ensures a block is only fetched once)

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O, DMA, Interrupts

Physical Device

More Layers

- allows data to be read or written in fixed-sized blocks
- uniform interface to disparate devices
- translate between OS abstractions and hwspecific details of I/O devices
- Control registers, bulk data transfer, OS notifications

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O, DMA, Interrupts

Physical Device

First things first: Name the File!

- 1. Files are abstracted unit of information
- 2. Don't care exactly where on disk the file is
- → Files have human readable names
- file given name upon creation
- use the name to access the file

Name + Extension

Naming Conventions

- Some things OS dependent:
 Windows not case sensitive, UNIX is
- Some things common: Usually ok up to 255 characters

File Extensions, OS dependent:

- Windows:
 - attaches meaning to extensions
 - associates applications to extensions
- UNIX:
 - extensions not enforced by OS
 - Some apps might insist upon them (.c, .h, .o, .s, for C compiler)

Directory

Directory: provides names for files

- a list of human readable names
- a mapping from each name to a specific underlying file or directory

Path Names

```
Absolute: path of file from the root directory
/home/ada/projects/babbage.txt
Relative: path from the working directory
projects/babbage.txt
(current working dir stored in process' PCB)
```

- 2 special entries in each UNIX directory:
 - "." current dir
 - ".." for parent

To access a file:

- Go to the folder where file resides —OR—
- Specify the path where the file is

Directories

files' attributes stored elsewhere

OS uses path name to find directory all files Example: /home/tom/foo.txt File 2 bin 737 924 usr home 158. :..... File 158 mike 682 "/home" ada 818 830 tom ^{:....} File 830 music 320 **Directory:** "/home/tom" work 219 maps file name to attributes & location foo.txt 871-2 options: ^{:....}→ File 871 The quite "/home/tom/foo.txt" brown fox directory stores attributes jumped

over the

lazy dog.

Basic File System Operations

- Create a file
- Write to a file
- Read from a file
- Seek to somewhere in a file
- Delete a file
- Truncate a file

Challenges for File System Designers

Performance: despite limitations of disks

leverage spatial locality

Flexibility: need jacks-of-all-trades, diverse workloads, not just FS for X

Persistence: maintain/update user data + internal data structures on persistent storage devices

Reliability: must store data for long periods of time, despite OS crashes or HW malfunctions

Security: file should have protection mechanisms

Implementation Basics

Directories

• file name → file number

Index structures

• file number → block

Free space maps

find a free block; better: find a free block nearby

Locality heuristics

- policies enabled by above mechanisms
 - group directories
 - make writes sequential
 - defragment

File System Properties

Most files are small

- need strong support for small files
- block size can't be too big

Some files are very large

- must allow large files
- large file access should be reasonably efficient

File System Layout

File System is stored on *disks*

- disk can be divided into 1 or more *partitions*
- Sector 0 of disk called Master Boot Record
- end of MBR: partition table (partitions' start & end addrs)

First block of each partition has boot block

loaded by MBR and executed on boot

Storing Files

Files can be allocated in different ways:

Contiguous allocation

All bytes together, in order

Linked Structure

Each block points to the next block

Indexed Structure

Index block points to many other blocks

Which is best?

- For sequential access? Random access?
- Large files? Small files? Mixed?

Contiguous Allocation

All bytes together, in order

- + Simple: state required per file: start block & size
- + Efficient: entire file can be read with one seek
- Fragmentation: external is bigger problem
- Usability: user needs to know size of file at time of creation

Used in CD-ROMs, DVDs

Linked List Allocation

Each file is stored as linked list of blocks

- First word of each block points to next block
- Rest of disk block is file data
- + Space Utilization: no space lost to external fragmentation
- + Simple: only need to find 1st block of each file
- Performance: random access is slow
- Implementation: blocks mix meta-data and data

File Allocation Table (FAT) FS

[late 70's]

Microsoft File Allocation Table

- originally: MS-DOS, early version of Windows
- today: still widely used (e.g., CD-ROMs, thumb drives, camera cards)

File table:

- Linear map of all blocks on disk
- Each file a linked list of blocks

FAT File System

- 1 entry per block
- EOF for last block
- 0 indicates free block
- directory entry maps
 name to FAT index

Directory	
bart.txt	9
maggie.txt	12

File 9

File 12

FAT Directory Structure

Folder: a file with 32-byte entries Each Entry:

music 320 work 219 foo.txt 871

- 8 byte name + 3 byte extension (ASCII)
- creation date and time
- last modification date and time
- first block in the file (index into FAT)
- size of the file
- Long and Unicode file names take up multiple entries

How is FAT Good?

- + Simple: state required per file: start block only
- + Widely supported
- + No external fragmentation
- + block used only for data

How is FAT Bad?

- Poor locality
- Many file seeks unless entire FAT in memory:
 Example: 1TB (2⁴⁰ bytes) disk, 4KB (2¹²) block
 size, FAT has 256 million (2²⁸) entries (!)
 4 bytes per entry → 1GB (2³⁰) of main
 memory required for FS (a sizeable overhead)
- Poor random access
- Limited metadata
- Limited access control
- Limitations on volume and file size
- No support for reliability techniques

Unix File System (UFS)

Tree-based, multi-level index

UFS Superblock

Identifies file system's key parameters:

- type
- block size
- inode array location and size
- location of free list

UFS: Index Structures

UFS: Index Structures

What else is in an inode?

- Type
 - ordinary file
 - directory
 - symbolic link
 - special device
- Size of the file (in #bytes)
- # links to the i-node
- Owner (user id and igroupd)
- Protection bits
- Times: creation, last accessed, last modified

File Metadata

Direct Pointer	
DP	
Direct Pointer	
Indirect Pointer	
Dbl. Indirect Ptr.	

Tripl. Indirect Ptr.

4 Characteristics of UFS

- 1. Tree Structure
 - efficiently find any block of a file
- 2. High Degree (or fan out)
 - minimizes number of seeks
 - supports sequential reads & writes
- 3. Fixed Structure
 - implementation simplicity
- 4. Asymmetric
 - not all data blocks are at the same level
 - supports large files
 - small files don't pay large overheads

Small Files in UFS

Sparse Files in UFS

Example:

2 x 4 KB blocks: 1 @ offset 0

1 @ offset 2³⁰

Inode

File Metadata

riie wetadata

Direct Pointer

NIL

Dbl. Indirect Ptr.

NIL

Triple Double
Indirect Indirect Data
Blocks Blocks Blocks

File size (1s -lgGh): 1.1 GB

Space consumed (du -hs): 16 KB

Read from hole: 0-filled buffer created

Write to hole: storage blocks for data

+ required indirect blocks allocated

UFS: Steps to reading /foo/bar/baz

Read & Open:

- (1) inode #2 (root always has inumber 2), find root's blocknum (912)
- (2) root directory (in block 912), find foo's inumber (31)
- (3) inode #31, find foo's blocknum (194)
- (4) foo (in block 194), find bar's inumber (73)
- (5) inode #73, find bar's blocknum (991)
- (6) bar (in block 991), find baz's inumber (40)
- (7) inode #40, find data blocks (302, 913, 301)
- (8) data blocks (302, 913, 301)

Caching often allows first few steps to be skipped

Free List

- List of blocks not in use
- How to maintain?
 - 1. linked list of free blocks
 - inefficient (why?)

- simple and efficient
- 3. bitmap
 - good for contiguous allocation

UFS Directory Structure

Originally: array of 16 byte entries

- 14 byte file name
- 2 byte i-node number

Now: linked lists. Each entry contains:

- 4-byte inode number
- Length of name
- Name (UTF8 or some other Unicode encoding)

First entry is ".", points to self

Second entry is "..", points to parent inode

music 320 work 219 foo.txt 871

File System API: Creation

Creating and deleting files

- creat(): creates
 - 1. a new file with some metadata; and
 - 2. a name for the file in a directory
- link() creates a hard link-a new name for the same underlying file, and increments link count in inode
- unlink() removes a name for a file from its directory and decrements link count in inode. If last link, file itself and resources it held are deleted

Hard & Soft Links

- a mapping from each name to a specific underlying file or directory (hard link)
- a **soft link** is instead a mapping from a file name to another file name
 - it's simply a file that contains the name of another file
 - use as alias: a soft link that continues to remain valid when the (path of) the target file name changes

File System Consistency

System crashes before modified files written back?

- Leads to inconsistency in FS
- fsck (UNIX) & scandisk (Windows) check FS consistency

Algorithm:

- Build table with info about each block
 - initially each block is unknown except superblock
- Scan through the inodes and the freelist
 - Keep track in the table
 - If block already in table, note error
- Finally, see if all blocks have been visited

Inconsistent FS Examples

Consistent

Missing Block 2

(add it to the free list)

Duplicate Block 4 in Free List

(rebuild free list)

Duplicate Block 4 in Data List (copy block and add it to one file)

0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 in use
0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list
0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 in use
0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 in use
0 0 1 0 2 0 0 0 0 1 1 0 0 0 1 1 free list

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 0 1 0 2 1 1 1 0 0 1 1 1 0 0 in use

0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 free list

Check Directory System

Use a per-file table instead of per-block Parse entire directory structure, start at root

- Increment counter for each file you encounter
- This value can be >1 due to hard links
- Symbolic links are ignored

Compare table counts w/link counts in i-node

- If i-node count > our directory count (wastes space)
- If i-node count < our directory count (catastrophic)