
Disks and RAID

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, F. Schneider, E. Sirer, R. Van Renesse]

• Magnetic disks
• Large capacity at low cost
• Block level random access
• Slow performance for random access
• Good performance for streaming access

• Flash memory
• Capacity at intermediate cost
• Block level random access
• Medium performance for random writes
• Good performance otherwise

Storage Devices

2

THAT WAS THEN
• 13th September 1956
• The IBM RAMAC 350
• Total Storage = 5 million characters

(just under 5 MB)

Magnetic Disks are 60 years old!

3http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

THIS IS NOW
• 2.5-3.5” hard drive
• Example: 500GB Western Digital

Scorpio Blue hard drive
• easily up to a few TB

Track

Sector

Head
Arm

Arm
Assembly

Platter

Surface

Surface

Motor Motor

Spindle

Must specify:
• cylinder #

(distance from spindle)
• head #
• sector #
• transfer size
• memory address

Reading from disk

4

Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs)
• Rotational Latency: to get to the sector (4-8 millisecs)

(on average, only need to wait half a rotation)
• Transfer: get bits off the disk (25-50 microsecs)

Disk overheads

6

Track

Sector Seek Time

Rotational
Latency

Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Metric: how many cylinders traversed?

Disk Scheduling

7

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO

8

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO

9

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

640 cylinders

• Select request with minimum seek time from
current head position

• A form of Shortest Job First (SJF) scheduling
• Not optimal: suppose cluster of requests at far end

of disk ➜ starvation!
SSTF Schedule?
Total head movement?

Disk Scheduling: Shortest Seek Time First

10

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

• Select request with minimum seek time from
current head position

• A form of Shortest Job First (SJF) scheduling
• Not optimal: suppose cluster of requests at far end

of disk ➜ starvation!
SSTF Schedule?
Total head movement?

Disk Scheduling: Shortest Seek Time First

11

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

236 cylinders

Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests
• movement reversed @ end of disk
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN

12

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests
• movement reversed @ end of disk
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN

13

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

208 cylinders

Circular list treatment:
• head moves from one end to other
• servicing requests as it goes
• reaches the end, returns to beginning
• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

14

C-SCAN Schedule?
Total Head movement?
Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

Circular list treatment:
• head moves from one end to other
• servicing requests as it goes
• reaches the end, returns to beginning
• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

15

C-SCAN Schedule?
Total Head movement?
Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

322 cylinders

(1) Isolated Disk Sectors (1+ sectors down, rest OK)
Permanent: physical malfunction (magnetic coating,
scratches, contaminants)
Transient: data corrupted but new data can be successfully
written to / read from sector

(2) Entire Device Failure
• Damage to disk head, electronic failure, wear out
• Detected by device driver, accesses return error codes
• Annual failure rates or Mean Time To Failure (MTTF)

Disk Failure Cases

16

Most SSDs based on NAND-flash
• retains its state for years without power

Solid State Drives (Flash)

17https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Metal Oxide Semiconductor Field Effect
Transistor (MOSFET) Floating Gate MOSFET (FGMOS)

• Erase block: sets each cell to “1”
• erase granularity = “erasure block” = 128-512 KB
• time: several ms

• Write page: can only write erased pages
• write granularity = 1 page = 2-4KBytes

• Read page:
• read granularity = 1 page = 2-4KBytes

Flash Operations

19

• can’t overwrite individual pages (must write blocks)
• limited # of erase cycles per block (memory wear)

• 103-106 erases and the cell wears out
• reads can “disturb” nearby words and overwrite them with

garbage

• Lots of techniques to compensate:
• error correcting codes
• bad page/erasure block management
• wear leveling: trying to distribute erasures across the entire

driver

Flash Limitations

20

Flash Translation Layer
Flash device firmware maps logical page #
to a physical location
• Garbage collect erasure block by copying live pages to

new location, then erase
-More efficient if blocks stored at same time are kept together

• Wear-leveling: only write each physical page a limited
number of times

• Remap pages that no longer work (sector sparing)

Transparent to the device user
21

RAM (Memory) vs. HDD (Disk) vs. SSD, 2020

22

RAM HDD SSD
Typical Size 100 GB 1 TB 1TB
Cost $5-10 per GB $0.05 per GB $0.10 per GB
Latency 15 ns 15 ms 1ms
Throughput
(Sequential) 8000 MB/s 175 MB/s 500 MB/s
Power Reliance volatile non-volatile non-volatile

• Fast: data is there when you want it
• Reliable: data fetched is what you stored
• Affordable: won’t break the bank

Enter: Redundant Array of Inexpensive Disks (RAID)
• In industry, “I” is for “Independent”
• The alternative is SLED, single large expensive disk
• RAID + RAID controller looks just like SLED to computer (yay,

abstraction!)

What do we want from storage?

23

Files striped across disks
+ Fast

latency?
throughput?

+ Cheap
capacity?

– Unreliable
max #failures?
MTTF?

RAID-0

24

stripe 0
stripe 2
stripe 4
stripe 6
stripe 8

stripe 10
stripe 12
stripe 14

Disk 0
stripe 1
stripe 3
stripe 5
stripe 7
stripe 9

stripe 11
stripe 13
stripe 15

Disk 1

.

Striping reduces reliability
• More disks ➜ higher probability of some disk failing
• N disks: 1/Nth mean time between failures of 1 disk

What can we do to improve Disk Reliability?

Striping and Reliability

25

😞

Disks Mirrored:
data written in 2 places

+ Reliable
deals well with disk loss
but not corruption

+ Fast
latency?
throughput?

– Expensive

RAID-1

26

data 0
data 1
data 2
data 3
data 4
data 5
data 6
data 7

Disk 1

. . .

data 0
data 1
data 2
data 3
data 4
data 5
data 6
data 7

Disk 0

. . .

block-level striping + parity disk
+ Cheap
– Slow Writes
– Unreliable

parity disk is write bottleneck and wears out faster

RAID-4 (rarely used)

31

data 2
data 6

data 10
data 14

Disk 2
data 1
data 5
data 9

data 13

Disk 1
parity 1
parity 2
parity 3
parity 4

Disk 5
data 3
data 7

data 11
data 15

Disk 3
data 4
data 8

data 12
data 16

Disk 4

• 𝐷! = 𝐷"⊕𝐷#⊕… ⊕𝐷!$"
• ⊕ = XOR operation
• If one of 𝐷"… 𝐷!$" fails, we can

reconstruct its data by XOR-ing all the
remaining drives

Using a parity disk

32

• Suppose block lives on disk 𝐷!
• Method 1:
• read corresponding blocks on 𝐷! … 𝐷"#$
• XOR all with new content of block
• write disk 𝐷$ and 𝐷" in parallel
• Method 2:
• read 𝐷$ (old content) and 𝐷"
• XOR both with new content of block
• write disk 𝐷$ and 𝐷" in parallel
• Note that in both write cases 𝐷" must always be

updated
è𝐷! is a write performance bottleneck
• Either way:
• throughput: ½ of single disk
• latency: double of single disk

Updating a block in RAID-4

33

• Save up updates to stripe across 𝐷!… 𝐷"#!
• Compute 𝐷" = 𝐷!⊕𝐷$⊕… ⊕𝐷"#!
• Write 𝐷!… 𝐷" in parallel
• (N-1)x seq. throughput of single disk

Streaming update in RAID-4

34

+ Reliable
you can lose one disk

+ Fast
(N-1)x seq. throughput of single disk
N/4x random write throughput

+ Affordable

RAID 5: Rotating Parity w/Striping

36

parity 0-3
data 4
data 8

data 12
data 16

Disk 0
data 0

parity 4-7
data 9

data 13
data 17

Disk 1
data 1
data 5

parity 8-11
data 14
data 18

Disk 2
data 2
data 6

data 10
parity 12-15

data 19

Disk 3
data 3
data 7

data 11
data 15

parity 16-19

Disk 4

