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• Magnetic disks
• Large capacity at low cost 
• Block level random access
• Slow performance for random access
• Good performance for streaming access

• Flash memory
• Capacity at intermediate cost
• Block level random access
• Medium performance for random writes
• Good performance otherwise

Storage Devices
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THAT WAS THEN
• 13th September 1956 
• The IBM RAMAC 350
• Total Storage = 5 million characters

(just under 5 MB)

Magnetic Disks are 60 years old!

3http://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

THIS IS NOW
• 2.5-3.5” hard drive
• Example: 500GB Western Digital 

Scorpio Blue hard drive
• easily up to a few TB
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Must specify:
• cylinder #

(distance from spindle)
• head #
• sector #
• transfer size
• memory address

Reading from disk
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Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs)
• Rotational Latency: to get to the sector (4-8 millisecs)

(on average, only need to wait half a rotation)
• Transfer: get bits off the disk (25-50 microsecs)

Disk overheads
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Objective: minimize seek time

Context: a queue of cylinder numbers (#0-199)

Metric: how many cylinders traversed? 

Disk Scheduling
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



• Schedule disk operations in order they arrive
• Downsides?

FIFO Schedule?
Total head movement?

Disk Scheduling: FIFO
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

640 cylinders



• Select request with minimum seek time from 
current head position

• A form of Shortest Job First (SJF) scheduling 
• Not optimal: suppose cluster of requests at far end 

of disk ➜ starvation!
SSTF Schedule?
Total head movement? 

Disk Scheduling: Shortest Seek Time First

10

Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



• Select request with minimum seek time from 
current head position

• A form of Shortest Job First (SJF) scheduling 
• Not optimal: suppose cluster of requests at far end 

of disk ➜ starvation!
SSTF Schedule?
Total head movement? 

Disk Scheduling: Shortest Seek Time First
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

236 cylinders



Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests 
• movement reversed @ end of disk 
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



Elevator Algorithm:
• arm starts at one end of disk
• moves to other end, servicing requests 
• movement reversed @ end of disk 
• repeat

SCAN Schedule?
Total head movement?

Disk Scheduling: SCAN
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Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

208 cylinders



Circular list treatment:
• head moves from one end to other
• servicing requests as it goes
• reaches the end, returns to beginning
• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN
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C-SCAN Schedule?
Total Head movement?
Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67



Circular list treatment:
• head moves from one end to other
• servicing requests as it goes
• reaches the end, returns to beginning
• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN
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C-SCAN Schedule?
Total Head movement?
Head pointer @ 53
Queue: 98, 183, 37, 122, 14, 124, 65, 67

322 cylinders



(1) Isolated Disk Sectors (1+ sectors down, rest OK)
Permanent: physical malfunction (magnetic coating, 
scratches, contaminants) 
Transient: data corrupted but new data can be successfully 
written to / read from sector 

(2) Entire Device Failure
• Damage to disk head, electronic failure, wear out
• Detected by device driver, accesses return error codes
• Annual failure rates or Mean Time To Failure (MTTF)

Disk Failure Cases
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Most SSDs based on NAND-flash
• retains its state for years without power

Solid State Drives (Flash)

17https://flashdba.com/2015/01/09/understanding-flash-floating-gates-and-wear/

Metal Oxide Semiconductor Field Effect 
Transistor (MOSFET) Floating Gate MOSFET (FGMOS)



• Erase block: sets each cell to “1”
• erase granularity = “erasure block” = 128-512 KB
• time: several ms

• Write page: can only write erased pages 
• write granularity = 1 page = 2-4KBytes

• Read page: 
• read granularity = 1 page = 2-4KBytes

Flash Operations
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• can’t overwrite individual pages (must write blocks)
• limited # of erase cycles per block (memory wear)

• 103-106 erases and the cell wears out
• reads can “disturb” nearby words and overwrite them with 

garbage

• Lots of techniques to compensate:
• error correcting codes
• bad page/erasure block management
• wear leveling: trying to distribute erasures across the entire 

driver

Flash Limitations
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Flash Translation Layer
Flash device firmware maps logical page # 
to a physical location
• Garbage collect erasure block by copying live pages to 

new location, then erase
-More efficient if blocks stored at same time are kept together

• Wear-leveling: only write each physical page a limited 
number of times

• Remap pages that no longer work (sector sparing)

Transparent to the device user
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RAM (Memory) vs. HDD (Disk) vs. SSD, 2020
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RAM HDD SSD
Typical Size 100 GB 1 TB 1TB
Cost $5-10 per GB $0.05 per GB $0.10 per GB
Latency 15 ns 15 ms 1ms
Throughput 
(Sequential) 8000 MB/s 175 MB/s 500 MB/s
Power Reliance volatile non-volatile non-volatile



• Fast: data is there when you want it
• Reliable: data fetched is what you stored
• Affordable: won’t break the bank

Enter: Redundant Array of Inexpensive Disks (RAID)
• In industry, “I” is for “Independent”
• The alternative is SLED, single large expensive disk
• RAID + RAID controller looks just like SLED to computer (yay, 

abstraction!)

What do we want from storage?
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Files striped across disks
+ Fast

latency?
throughput?

+ Cheap
capacity?

– Unreliable
max #failures?
MTTF?

RAID-0
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stripe 0
stripe 2
stripe 4
stripe 6
stripe 8

stripe 10
stripe 12
stripe 14

Disk 0
stripe 1
stripe 3
stripe 5
stripe 7
stripe 9

stripe 11
stripe 13
stripe 15

Disk 1

. . .. . .



Striping reduces reliability
• More disks ➜ higher probability of some disk failing
• N disks: 1/Nth mean time between failures of 1 disk

What can we do to improve Disk Reliability?

Striping and Reliability
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😞



Disks Mirrored: 
data written in 2 places

+ Reliable
deals well with disk loss 
but not corruption

+ Fast
latency?
throughput?

– Expensive

RAID-1
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. . .



block-level striping + parity disk
+ Cheap
– Slow Writes
– Unreliable

parity disk is write bottleneck and wears out faster

RAID-4 (rarely used)
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• 𝐷! = 𝐷"⊕𝐷#⊕… ⊕𝐷!$"
• ⊕ = XOR operation
• If one of 𝐷"… 𝐷!$" fails, we can 

reconstruct its data by XOR-ing all the 
remaining drives

Using a parity disk
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• Suppose block lives on disk 𝐷!
• Method 1:
• read corresponding blocks on 𝐷! … 𝐷"#$
• XOR all with new content of block
• write disk 𝐷$ and 𝐷" in parallel
• Method 2:
• read 𝐷$ (old content) and 𝐷"
• XOR both with new content of block
• write disk 𝐷$ and 𝐷" in parallel
• Note that in both write cases 𝐷" must always be 

updated
è𝐷! is a write performance bottleneck
• Either way:
• throughput: ½ of single disk
• latency: double of single disk

Updating a block in RAID-4
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• Save up updates to stripe across 𝐷!… 𝐷"#!
• Compute 𝐷" = 𝐷!⊕𝐷$⊕… ⊕𝐷"#!
• Write 𝐷!… 𝐷" in parallel
• (N-1)x seq. throughput of single disk

Streaming update in RAID-4
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+ Reliable
you can lose one disk

+ Fast
(N-1)x seq. throughput of single disk
N/4x random write throughput

+ Affordable

RAID 5: Rotating Parity w/Striping
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