
Virtual Memory & Caching
(Chapter 12-17)

CS 4410
Operating Systems

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

This time: Virtual Memory & Caching

Last Time: Address Translation

2

• Each process has illusion of large address space
• 2x bytes for x-bit addressing
• However, physical memory is usually much smaller
• How do we give this illusion to multiple processes?
• Virtual Memory: some addresses reside in disk

What is Virtual Memory?

33Physical memory

Disk

Virtual memory

page 0
page 1
page 2
page 3
page 4

page N

Page Table

Process executes from disk!

4

L2

L1

L3

RAM

DISK

RAM is really just another layer of cache

Swapping
• Loads entire process in memory
• “Swap in” (from disk) or “Swap out” (to disk) a process
• Slow (for large processes)
• Wasteful (might not require everything)
• Does not support sharing of code segments
• Virtual memory limited by size of physical memory

Paging
• Runs all processes concurrently
• A few pages from each process live in memory
• Finer granularity, higher performance
• Large virtual mem supported by small physical mem
• Certain pages (read-only ones, for example) can be shared among

processes

Swapping vs. Paging

5

Mapped
• to a physical frame

Not Mapped (→ Page Fault)
• in a physical frame, but not currently mapped
• or still in the original program file
• or zero-filled (heap/BSS, stack)
• or on backing store (“paged or swapped out”)
• or illegal: not part of a segment
→ Segmentation Fault

(the contents of) A Virtual Page Can Be

6

Modify Page Tables with a present bit
• Page in memory à present = 1
• Page not in memory à PT lookup triggers page fault

32 :P=1
4183:P=0
177 :P=1
5721:P=0

Supporting Virtual Memory

7

Disk

Mem

Page Table

0
1
2
3

Identify page and reason (r/w/x)

• access inconsistent w/ segment access rights
à terminate process

• access a page that is kept on disk:
à does frame with the code/data already exist?
No? Allocate a frame & bring page in (next slide)

• access of zero-initialized data (BSS) or stack
• Allocate a frame, fill page with zero bytes
• access of COW page
• Allocate a frame and copy

Handling a Page Fault

8

• Find a free frame
- evict one if there are no free frames

• Issue disk request to fetch data for page
• Block current process
• Context switch to another process
• When disk request completes, update PTE
• frame number, present bit, RWX bits
• Put current process in ready queue

When a page needs to be brought in…

9

• Find all page table entries that refer to old page
- Frame might be shared
- Maintain a Core Map (frames → pages)

• Set each page table entry to invalid
• Remove any TLB entries
- “TLB Shootdown”

• Write changes on page back to disk, if needed
- Dirty/Modified bit in PTE indicates need
- Text segments are (still) on program image on disk

When a page needs to be swapped out…

10

• Save current process’ registers in PCB
• Flush TLB (unless TLB is tagged)
• Restore registers and PTBR of next process

to run
• “Return from Interrupt”

Updated Context Switch

13

Every layer is a cache for the layer below it.

Memory Hierarchy

17

0%

25%

50%

75%

100%

1 2 4 8 16

H
it

R
a

te

Cache Size (KB)

Working Set

18

1. Collection of a process’ most recently used pages
(The Working Set Model for Program Behavior, Denning,’68)

2. Pages referenced by process in last Δ time-units

Excessive rate of paging
Cache lines evicted before they can be reused

Causes:
• Too many processes in the system
• Cache not big enough to fit working set
• Bad luck (conflicts)
• Bad eviction policies (later)

Prevention:
• Restructure code to reduce working set
• Increase cache size
• Improve caching policies

Thrashing

19

• Assignment: where do you put the data?
• Replacement: whom do you kick out?

25

Caching

What do you do when memory is full?

• Random: Pick any page to eject at random
• Used mainly for comparison
• FIFO: The page brought in earliest is evicted
• Ignores usage
• OPT: Belady’s algorithm
• Select page not used for longest time
• LRU: Evict page that hasn’t been used for the longest
• Assumes past is a good predictor of the future
• MRU: Evict the most recently used page
• LFU: Evict least frequently used page
• And many approximation algorithms

Page Replacement Algorithms

26

• more frames (i.e., larger cache) à
notmore misses

Expectation

27

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

28

frames
1 1
2 2 1
3 3 2 1
4 3 2 4
1 3 1 4
2 2 1 4
5 2 1 5
1 2 1 5
2 2 1 5
3 2 3 5
4 4 3 5
5 4 3 5

ß contents of frames after reference

page fault (miss)
hit

marks arrival time4

re
fe

re
nc

e

9 page faults

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 4 frames (4 pages in memory at a time per process):

First-In-First-Out (FIFO) Algorithm

29

frames
1 1
2 2 1
3 3 2 1
4 4 3 2 1
1 4 3 2 1
2 4 3 2 1
5 4 3 2 5
1 4 3 1 5
2 4 2 1 5
3 3 2 1 5
4 3 2 3 4
5 3 2 5 4

10 page faults

more frames à more page faults?

Belady’s Anomaly

ß contents of frames after reference

re
fe

re
nc

e

page fault
hit

marks arrival time4

• Replace frame that will not be used for the longest
• 4 frames example

Optimal Algorithm (OPT)

30

1 1
2 2 1
3 3 2 1
4 4 3 2 1
1 4 3 2 1
2 4 3 2 1
5 5 3 2 1
1 5 3 2 1
2 5 3 2 1
3 5 3 2 1
4 5 3 2 4
5 5 3 2 4

6 page faults
Question: How do we tell the future?
Answer: We can’t

OPT used as upper-bound in measuring
how well your algorithm performs

In real life, we do not have access to the
future page request stream of a program

à Need to make a guess at which pages will
not be used for the longest time

OPT Approximation

31

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Least Recently Used (LRU) Algorithm

32

1 1
2 2 1
3 3 2 1
4 4 3 2 1
1 4 3 2 1
2 4 3 2 1
5 4 5 2 1
1 4 5 2 1
2 4 5 2 1
3 3 5 2 1
4 3 4 2 1
5 3 4 2 5

page fault
hit

marks most recent use4

8 page faults

• On reference: Timestamp each page
• On eviction: Scan for oldest page

Problems:
• Large page lists
• Timestamps are costly

Solution: approximate LRU
• Note: LRU is already an approximation
• Exploit use (REF) bit in PTE

Implementing LRU

33

• To allocate a frame,
inspect the use bit in
the PTE at clock hand
and advance clock
hand

• Used? Clear use bit
and repeat

Clock Algorithm

37

MRU: Remove the most recently touched page
• Good for data accessed only once, e.g. a movie file

LFU: Remove page with lowest usage count
• Use multiple bits. Shift right by 1 at regular intervals.

MFU: remove the most frequently used page

Other Algorithms

• So far, we have tacitly assumed that all
frames are shared by all processes
• This is called “global replacement”
• But is it fair?
• Badly behaved processes can ruin the

experience of processes with good locality
• Local replacement: divided the frames up

evenly between the processes
• Can lead to under-utilization

Local versus Global Replacement

47

