
Introduction

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George,
F. B. Schneider, E. G. Sirer, R. van Renesse]

• OS is an intermediary between programs and
hardware.

• OS creates an environment to execute programs in a
convenient and efficient manner:
- allocates resources (CPU, storage, ...)
- controls programs
• cooperation (sharing and synchronization)
• isolation (protection and resource management)

What an OS does

2

Operating System

Application Application Application Application Application

Hardware

OS Interface

Physical
Machine
Interface

• Services it provides to programs
• Components implementing those services
- internal design and implementation
• Real hardware is difficult to use directly

Ways to view an OS

3

Learn solutions to problems arising in all
systems:
- Resource sharing (scheduling)
-Cooperation (concurrent programming:

communication, synchronization)
- System structure (abstractions, interfaces)

Why Study OS?

4

How designing an OS differs from designing a program
• Measure of success: OS concerned with

extensibility, security, reliability, …
• External interface: OS more complicated and

subject to change. E.g. I/O devices
• Structuring techniques: OS employs
- modules, layers, client-server, event-handler, transaction

Systems vs Programs (I)

5

How designing an OS differs from designing a program

OS must bridge mismatched performance
characteristics

• Registers vs RAM vs Disk
• Phone vs Laptop vs Server

Systems vs Programs (II)

6

Emergent properties: Evident only when
components are combined.

Example: Millennium Bridge (London)

What makes systems complex?

11

Propagation of Effects: When small
changes have disproportionate effects

Examples:
• Power failures in power grid
• Change auto tire size from 13” to 15”
»kills suspension
• Boeing 737 max 8 design
» 4th generation of 737
» larger engines, mounted further forward and higher
» pushes up nose of jet
» compensated by sensors and software…

What makes systems complex?

12

Incommensurate Scaling: Different parts
follow different scaling rules

Examples:
• Height limits on skyscrapers
• Size limits on cargo ships
»Horizon distance is linear in size of object
» Stopping distance is proportional to object volume
• Giant in Jack and the Beanstalk

What makes systems complex?

13

• Modularity: Good modularity minimizes
connections between components

• Abstraction: Separate interface from internals;
separate specification from implementation

• Hierarchy: Constrains interactions so easier to
understand

How to Manage Complexity

14

Referee
• Manages shared resources: CPU, memory, disks,

networks, displays, cameras, etc.

Illusionist
• Look! Infinite memory! Your own private processor!

Glue
• Offers set of common services
• Separates apps from I/O devices

OS has many roles

15

OS as Referee

16

Resource allocation
• Multiple concurrent tasks, how does OS decide who

gets how much?

Isolation
• A faulty app should not disrupt other apps or OS
• OS must export less than full power of underlying

hardware

Communication/Coordination
• Apps need to share state

OS as Illusionist (1)

17

Virtualization: Resources seem present but aren’t
• processor, memory, screen space, disk, network
• the entire computer (virtual machine):
• fooling the illusionist itself!
• ease of debugging, portability, isolation

Operating System (VMM)
App

Hardware

Virtual
Machine
Interface

App Guest OS Guest OS

App App

Abstraction: Enables new assumptions for clients

• Atomic operations
• HW provides atomicity at word level
- what happens during concurrent updates to complex data structures?
- what if computer crashes during a file write?

• Reliable communication channels
• At the hardware level, packets are lost…

OS as Illusionist (2)

18

OS as Glue

19

Simplify app design and facilitate sharing due to:
• send/receive of byte streams
• read/write files
• pass messages
• share memory
• UI

Decouples HW and app development

• Structure: how is the OS organized?
• Concurrency: how are parallel activities

created and controlled?
• Sharing: how are resources shared?
• Naming: how are resources named by users?
• Protection: how are distrusting parties

protected from each other?
• Security: how to authenticate, authorize, and

ensure privacy?
• Performance: how to make it fast?

Issues in OS Design

20

• Reliability: how do we deal with failures?
• Portability: how to write once, run anywhere?
• Extensibility: how do we add new features?
• Communication: how do we exchange information?
• Scale: what happens as demands increase?
• Persistence: how do we make information outlast the

processes that created it?
• Accounting: who pays the bill and how do we control

resource usage?

Issues in OS Design

21

