
Persistent Storage

&

File Systems

Storage Devices

We focus on two types of persistent storage

magnetic disks

servers, workstations, laptops

flash memory

smart phones, tablets, cameras, laptops

Other exist(ed)

tapes

drums

clay tablets

Interacting

with a Device

Registers Status Command DataInterface
(what the OS sees)

Internals

(what is needed to

implement the abstraction)

Abstraction

(what the user sees)

Interacting

with a Device

Registers Status Command DataInterface
(what the OS sees)

Internals

(what is needed to

implement the abstraction)

Interacting

with a Device

Registers Status Command Data

Microcontroller

Memory

Other device
specific chips

Internals

(what is needed to

implement the abstraction)

Microcontroller

Memory

Other device
specific chips

Interacting

with a Device

OS controls device by
reading/writing registers

Registers Status Command Data

Internals

(what is needed to

implement the abstraction)

while (STATUS == BUSY)
; // wait until device is not busy

write data to DATA register

write command to COMMAND register
// starts device and executes command

while (STATUS == BUSY)

; // wait until device is done with request

Tuning It Up

CPU is polling

use interrupts

run another process while
device is busy

what if device returns
very quickly?

CPU is copying all the
data to and from DATA

use Direct Memory Access
(DMA)

while (STATUS == BUSY)
; // wait until device is not busy

write data to DATA register

write command to COMMAND register
// starts device and executes command

while (STATUS == BUSY)

; // wait until device is done with request

From interrupt-driven I/O
to DMA

Interrupt driven I/O

Device CPU RAM

CPU issues read request

device interrupts CPU with
data

CPU writes data to memory

for (i = 1 . . . n)

Disk

From interrupt-driven I/O
to DMA

Interrupt driven I/O

Device CPU RAM

CPU issues read request

device interrupts CPU with
data

CPU writes data to memory

+ Direct Memory Access

Device RAM

CPU sets up DMA request

Device puts data on bus &
RAM accepts it

Device interrupts CPU
when done

for (i = 1 . . . n)

Disk Disk

Communicating

with devices

Explicit I/O instructions (privileged)

in and out instructions in x86

Memory-mapped I/O

map device registers to memory location

use memory load and store instructions to read/
write to registers

How can the OS handle
a multitude of devices?

Abstraction!

Encapsulate device specific
interactions in a device driver

Implement device neutral
interfaces above device drivers

Humans are about 70%
water…

…OSs are about 70% device
drivers!

Application

File System

Block Cache

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Memory-mapped I/O, DMA, Interrupts

Physical Device

File System Stack (simplified)

User

Kernel
POSIX API [open, read, write, close, etc]

Generic Block Interface [block read/write]

Protocol-specific Block Interface

Magnetic disk

Store data magnetically on thin metallic film
bonded to rotating disk of glass, ceramic, or
aluminum

Disk Drive Schematic

13

Block/Sector

Typically 512 bytes

spare sectors added for fault tolerance

0
1

2

s–1

...

Track
data on a track
can be read
without moving
arm

track skewing
staggers logical
address 0 on
adjacent one to
account for time
to move head

Disk Drive Schematic

14

Block/Sector

PlatterSurface

Head

Spindle
thin cylinder that holds

magnetic material

each platter has two surfaces

reads by sensing a magnetic field

writes by creating one

floats on air cushion created by
spinning disk

Arm
assembly

Typically 512 bytes

spare sectors added for fault tolerance

set of tracks on different
surfaces with same track index

Cylinder

2018: 4200-15000 RPM

0
1

2

s–1

...

Track
data on a track
can be read
without moving
arm

track skewing
staggers logical
address 0 on
adjacent one to
account for time
to move head

Disk Read/Write
Present disk with a sector address

Old: CHS = (cylinder, head, sector)

New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track

seek

settle

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

Disk access time:

Disk Read/Write
Present disk with a sector address

Old: CHS = (cylinder, head, sector)

New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track

seek (and though shalt approximately find)

settle (fine adjustments)

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

Disk access time:

seek time +

Disk Read/Write
Present disk with a sector address

Old: CHS = (cylinder, head, sector)

New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track

seek (and though shalt approximately find)

settle (fine adjustments)

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

Disk access time:

seek time +
rotation time +

Disk Read/Write
Present disk with a sector address

Old: CHS = (cylinder, head, sector)

New abstraction: Logical Block Address (LBA)

linear addressing 0...N-1

Heads move to appropriate track

seek (and though shalt approximately find)

settle (fine adjustments)

Appropriate head is enabled

Wait for sector to appear under head

rotational latency

Read/Write sector

transfer time

Disk access time:

seek time +
rotation time +
transfer time

Seek time:

A closer look

Minimum: time to go from one track to the next

0.3-1.5 ms

Maximum: time to go from innermost to outermost track

more than 10ms; up to over 20ms

Average: average across seeks between each possible pair
of tracks

approximately time to seek 1/3 of the way across disk

Why? Details in the notes and 3EP readings

Seek time:

A closer look

Minimum: time to go from one track to the next

0.3-1.5 ms

Maximum: time to go from innermost to outermost track

more than 10ms; up to over 20ms

Average: average across seeks between each possible pair
of tracks

approximately time to seek 1/3 of the way across disk

Head switch time: time to move from track on one
surface to the same track on a different surface

range similar to minimum seek time

i

Rotation time:

A closer look

Today most disk rotate at 4,200 to 15,000 RPM

≈ 15ms to 4ms per rotation

good estimate for rotational latency is half that amount

Head starts reading as soon as it settles on a track

track buffering to avoid “shoulda coulda” if any of the
sectors flying under the head turn out to be needed

Transfer time:

A closer look

Surface transfer time

Time to transfer one or more sequential sectors to/
from surface after head reads/writes first sector

Much smaller than seek time or rotational latency

512 bytes at 100MB/s ≈ 5µs (0.005 ms)

Lower for outer tracks than inner ones

same RPM, but more sectors/track: higher bandwidth!

Host transfer time

time to transfer data between host memory and disk
buffer

60MB/s (USB 2.0); 640 MB/s (USB 3.0); 25.GB/s (Fibre
Channel 256GFC)

Other

I/O

Disk Head Scheduling

OS maximizes disk I/O throughput by minimizing
head movement through disk head scheduling

and this time we have a good sense of tasks’ length!

(surface, track, sector)

CPU
Disk

In a multiprogramming/time sharing environment, a
queue of disk I/Os can form

Read about disk
scheduling algorithms

in class notes and
in Chapter 37 of

3 Easy Pieces

Flash Storage

To write 0

apply positive voltage to drain

apply even stronger positive
voltage to control gate

some electrons are tunneled into
floating gate

N

source

N

drain

Control gate

P-Type substrate

Floating gate

Bit stored here,
surrounded by an insulator

No charge = 1

Charge = 0

Fowler-Nordheim tunneling

Oxide

sidewall

Oxide

tunnel

Oxide/Nitride/Oxide

ONO inter-poly
dielectric (insulator)

To write 1

apply positive voltage to drain

apply negative voltage to control
gate

electrons are forced out of
floating gate into source

To read

apply voltage to control gate

apply voltage across source and
drain

measure current between source
and drain to determine whether
electrons in gate

if electrons in floating gate,
must apply higher voltage ato
control gate to have current

measured current can encode
more than a single bit

+

+

The SSD

Storage Hierarchy

Cell
1 to 4

bits

Plane/Bank
Many blocks

(Several Ks)

Several banks that
can be accessed

in parallel

Flash ChipBlock
64 to 256

 pages

not to be confused
with a disk block

Page
2 KB to 8 KB

not to be
confused with

a VM page

Basic Flash Operations
Read (a page)

10s of µs, independent of the previously read page

great for random access!

Erase (a block)

sets the entire block (with all its pages) to 1 (!)

very coarse way to write 1s…

1.5 to 2 ms (on a fast single level cell)

Program (a page)

can change some bits in a page of an erased block to 0

100s of µs

changing a 0 bit back to 1 requires erasing the entire block!

Using Flash Memory

Need to map reads and writes to logical blocks to
read, program, and erase operations on flash

Flash Translation Layer (FTL)

Flash Flash

Flash

Flash

Flash

Memory

Flash

Controller

In
te

rf
ac

e
lo

gi
c

Caching and

Mapping tables

Control logicDevice interface

(logical blocks, page-sized)

From Flash to SSD

Flash Translation Layer

tries to minimize

write amplification: []

wear out: practices wear leveling

disturbance: when many reads occur from pages of the
same block, value of nearby cells can be affected

Flash

write traffic (bytes) to flash chips
write traffic (bytes) from client to SSD

The File System
Abstraction

Addresses need for long-term information storage:

store large amounts of information

do it in a way that outlives processes (RAM will not do)

can support concurrent access from multiple processes

Presents applications with persistent, named data

Two main components:

files

directories

The File
A file is a named collection of data. In fact, it has
many names, depending on context:

i-node number: low-level name assigned to the file by the
file system

path: human friendly string

must be mapped to inode number, somehow

file descriptor

dynamically assigned handle aprocess uses to refer to i-node

A file has two parts

data – what a user or application puts in it

array of untyped bytes

metadata – information added and managed by the OS

size, owner, security info, modification time, etc.

The Directory

A special file that stores mappings between human-
friendly names of files and their inode numbers

Has its own inode, of course

Mapping may of course also apply
to human-friendly names of
directories and their inodes

directory tree

/ indicates the root

Users bin

lorenzo irene ls

Duc1000s.
pdf

/

Mount

Point

Mount

Mount: allows multiple
file systems on multiple
volumes to form a single
logical hierarchy

a mapping from some
path in existing file
system to the root
directory of the
mounted file system

USB

Volumes

/

Bin

Home

Lorenzo

Lorenzo’s

disk

Princess

Bride

Movies

/

Backup

USB Volume

The Abstraction Stack

Application

Library

File System

Physical Device

I/O systems are accessed through
a series of layered abstractions

The Abstraction Stack

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

I/O systems are accessed through a
series of layered abstractions

{

<latexit sha1_base64="0/T1Njel75jyvWQtdxjvdlXxCIc=">AAAB33icdVDLSgMxFL1TX7W+6mPnJlgEV8OMLdqdRRe6rGIf0JaSSTNtaCYzJBmhDl27EXGj4E/4Hf6Cy/6CX2Da6qI+Dlw4nHMuuSdexJnSjvNupebmFxaX0suZldW19Y3s5lZVhbEktEJCHsq6hxXlTNCKZprTeiQpDjxOa17/bOzXbqhULBTXehDRVoC7gvmMYG2kq2bSzuZc25kA/U9yJx+j89ed21G5nX1rdkISB1RowrFSDdeJdCvBUjPC6TDTjBWNMOnjLk0m9w3RvpE6yA+lGaHRRJ3J4UCpQeCZZIB1T/30xuJfXiPWfrGVMBHFmgoyfciPOdIhGpdFHSYp0XxgCCaSmQsR6WGJiTZfkjHVHTt/VHDzDvpNvqtXD223YBcvnVzpFKZIwy7swQG4cAwluIAyVICAD/fwBM8Wtu6sB+txGk1ZXzvbMAPr5RN8hY3A</latexit>

Fi
le

 S
ys

te
m
 A

PI
 a

nd
 P

er
fo

rm
an

ce
{

<latexit sha1_base64="0/T1Njel75jyvWQtdxjvdlXxCIc=">AAAB33icdVDLSgMxFL1TX7W+6mPnJlgEV8OMLdqdRRe6rGIf0JaSSTNtaCYzJBmhDl27EXGj4E/4Hf6Cy/6CX2Da6qI+Dlw4nHMuuSdexJnSjvNupebmFxaX0suZldW19Y3s5lZVhbEktEJCHsq6hxXlTNCKZprTeiQpDjxOa17/bOzXbqhULBTXehDRVoC7gvmMYG2kq2bSzuZc25kA/U9yJx+j89ed21G5nX1rdkISB1RowrFSDdeJdCvBUjPC6TDTjBWNMOnjLk0m9w3RvpE6yA+lGaHRRJ3J4UCpQeCZZIB1T/30xuJfXiPWfrGVMBHFmgoyfciPOdIhGpdFHSYp0XxgCCaSmQsR6WGJiTZfkjHVHTt/VHDzDvpNvqtXD223YBcvnVzpFKZIwy7swQG4cAwluIAyVICAD/fwBM8Wtu6sB+txGk1ZXzvbMAPr5RN8hY3A</latexit>

De
vi
ce

 A
cc

es
s

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

The Abstraction Stack

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

File System API
Creating a file

returns a file descriptor, a per-process integer that grants
process a capability to perform certain operations on the file

int close(int fd); closes the file

Reading/Writing

return number of bytes read/written

repositions file’s offset (initially 0, updates on reads and writes)

to offset bytes from beginning of file (SEEK_SET)

to offset bytes from current location (SEEK_CUR)

to offset bytes after the end of the file (SEEK_END)

int fd = open(“foo”, O_CREAT|O_RDWR|O_TRUNC, S_IRUSR|S_IWUSR);

path {
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

{
<latexit sha1_base64="I3xrejEZjtFheIrmieyu6hmbAX4=">AAAB33icdVDLSgMxFL1TX3V8VV26CRbB1TBji3ZhseDGZRX7gLaUTJppQzOTIckIZejajYgbBdf+jH8g/oZfYNrqoj4OXDiccy65J37MmdKu+25lFhaXlleyq/ba+sbmVm57p65EIgmtEcGFbPpYUc4iWtNMc9qMJcWhz2nDH55P/MYNlYqJ6FqPYtoJcT9iASNYG+mqnXZzec9xp0D/k/zZRzl+ebPL1W7utd0TJAlppAnHSrU8N9adFEvNCKdju50oGmMyxH2aTu8bowMj9VAgpJlIo6k6l8OhUqPQN8kQ64H66U3Ev7xWooNSJ2VRnGgakdlDQcKRFmhSFvWYpETzkSGYSGYuRGSAJSbafIltqrtO4bjoFVz0m3xXrx85XtEpXXr5yinMkIU92IdD8OAEKnABVagBgQDu4BGeLGzdWvfWwyyasb52dmEO1vMnY2CM5A==</latexit>

flags permissions

ssize_t read (int fd, void *buf, size_t count);

ssize_t write (int fd, void *buf, size_t count);

off_t lseek (int fd, off_t offset, int whence);

File System API
Writing synchronously

flushes to disk all dirty data for file referred to by fd

if file is newly created, must fsynch also its directory!

Getting file’s metadata

stat() , fstat() — return a stat structure

int fsynch (int fd);

 struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

retrieved from
file’s inode

on disk, per-file
data structure

may be cached
in memory

Old Friends

Remember fork()?
int main(int argc, char *argv[]){

int fd = open(“file.txt”, O_RDONLY);
assert (fd >= 0);
int rc = fork();
if (rc == 0) { /* child */

rc = lseek(fd, 10, SEEK_SET);
printf(“child: offset %d\n”, rc);

} else if (rc > 0) { /* parent */
(void) wait(NULL);
printf(“parent: offset %d\n”,

(int) lseek(fd, 10, SEEK_CUR));
}
return 0;

}

What does this code print?
child: offset 10
parent: offset 20

Parent

Child

Open File

Table

File
Descriptors

File
Descriptors

refcnt: 2
off: 20
inode 52874

7

7

The Directory

The directory holds mappings between human-
friendly names (HFNs) and inode numbers

It stores two types of mappings:

Hard links

map a file’s HFN (its local path) to the file’s inode number

Symbolic (soft) links

Logically, map a file’s HFN (its local path) to the HFN of a
different file

Implementation: maps a file’s HFN to the number of an
inode that contains the HFN of a different file

Hard links
Creating file foo adds a hard link for file foo in the file’s
directory

 Command ln oldpath newpath

adds to the directory a hard link mapping HFN newpath to the
inode number of the file with HFN oldpath
Now two HFNs are mapping to the same inode!

calls int link(const char *oldpath, const char *newpath)

Removing a file through the rm [file] command invokes a
call to int unlink(const char *pathname)

removes from directory the hard link between pathname and
corresponding inode number

File’s inode stores the number of hard links to it

inode reclaimed (file deleted) only when link count = 0; if file
opened, wait to reclaim until file is closed

Hard link No-Nos

Creating a hard link to a directory

may create a cycle in the directory tree!

Creating a hard link to files in other volumes

inode numbers are unique only within a single file
system

