Necessary conditions

OOl (©

for deadlock

Deadlock only if they all hold

Bounded resources

Acquire can block invoker
No preemption
the resource is mine, MINE! (until I release it)

Wait while holding

holds one resource while waiting for another

Circular waiting

Pi waits for Pi,1 and holds a resource requested by Pi.;
sufficient if one instance of each resource

Deadlock Prevention:
Negate (D

@ Eliminate “"Acquire can block invoker/bounded
resources”

0 Make resources sharable without locks
» Wait-free synchronization

» The Harmony book (Chapter 23) has examples of
non-blocking data structures

0 Have sufficient resources available, so acquire
never delays (duh!)

» E.g., use an unbounded queue, or make sure that
queue is "large enough”

Deadlock Prevention:
Negate (2

@ Allow preemption

0 Requires mechanisms to save/restore resource
state

» multiplexing (registers, memory, etc). VS.

» undo/redo (database transaction processing)

o Allow OS to preempt resources of waiting
processes

o Allow OS to preempt resources of requesting
processes

Deadlock Prevention:
Negate (3)

@ Eliminate Hold & Wait

o Dont hold resource while waiting for others
» Rewrite code

. def foo():
:def fO?(). acquire(?mutex);
acquire(?mutex); doSomeStuff();

doSomeStuff(y: | release(?mutex);
. Code in some other module that | o
ba P() y may acgiire more locks | % P() ’ I .

doOtherStuff();

release(?mutex); release(?mutex);
. J

Q: If bar() does not access shared variables
and does not need a lock, are these the same?

Deadlock Prevention:
Negate (3)

@ Eliminate Hold & Wait

o Dont hold resource while waiting for others
» Rewrite code

def foo():
acquire(?mutex);

def foo():
acquire(?mutex); doSomeStuff();

doSomeSfuff(\: o release(?mutex);
| 5 Code 1h Some olher modi/e | o

'i bar()" may acgire more locks)’ bar\(?’ 5 £ .
| doOthemseor™T); DR acquire(?mutex);
|

doOtherStuff();

release(?mutex); release(?mutex);
. J

A: No! In the code on the right, the state

that the mutex protects can change

between doSomeStuff and doOtherStuff

Deadlock Prevention:
Negate (3)

@ Eliminate Hold & Wait

o Dont hold resource while waiting for others

» Rewrite code

» Request all resources before execution begins...
but

— Processes dont know what they need
— No mechanism to request all resources at the same time
— Starvation (if waiting on popular resources)

— Low utilization (if resources needed only briefly)

» Release all resources before asking new ones

— Still has the last two problems...

Deadlock Prevention:
Negate ()

@ Eliminate circular waiting
o Single lock for the entire system?

0 Impose a total order on the sequence in which
different types of resources can be acquired

» Each resource type is assigned to a level

» Makes cycles impossible, since a cycle needs to go
from low to high level resources, and then back fo low

» Can be relaxed to a strict partial order™ if all
resources ‘of the same level” are acquired together

*a binary relation < that is:

1. irreflexive: not a < a 3. transitive: if a < b and b < ¢, then a < ¢

2. asymmetric: if a < b, then not b < a
s

Havenders Scheme (0S/360)

Hierarchical Resource Allocation
Every resource is associated with a level.

Rule H1: All resources from a given level
must be acquired using a single request.

Rule H2: After acquiring (and holding) from
level Lj, must not acquire from L; where i<|.

acquire

Rule H3: May not release from L; unless
already released from L; where j>i.

Example of allowed sequence:

1. acquire(W@L1, X@L1)
2. acquire(Y@L3)

3. release(Y@L3)
4.

acquire(Z@L2)
IS

release

Dining Philosophers (Again)

Pi: do forever
acquire(F(i));
acquire(G(i));
eat;
release(F(i));
release(G(i));

end

F(i): min(i, (i+1) mod 5)
G(i): max(i, (i+1) mod 5)

Ordering Resources
In Harmony

if left < right:
synch.acquire(? forks|left))
synch.acquire(? forks|right]) |
else:
synch.acquire(? forks|right|)
synch.acquire(? forks|left])

or

synch.acquire(? forks[min(left, right)])
synch.acquire(? forks[max(left, right)])

Simultaneous Acquisition
In Harmony

muter = S);nch.Lock() |
fOT‘ks — [False,] ¥ N /n/‘f/‘a//y, no forks are held |

conds = [synch.Condition(?mutez),] * N e ition per Fork
B |

def diner(which):
let left, right = (which, (which + 1) % N): \

1 while choose({ False, True }):
12 synch.acquire(?mulex

' !

| : 2 .
| 13 whi Tl!f ,‘.'.ll S [¢ ’!.‘ or forks!r "';""‘

wat wunti/ Free synch.wait(” conds|lej

o left Fork is used, |Af forks|left | Wat For bttt |
|

|
|
i
|
\
ot 7 r) |
|
\
\

e /‘/:9/75 for,é IS wUsed, 1f —".I".A’.\ right|: . L ‘ fohé\f dl?a/ Z‘/?eh

synch.wait(? conds|right|.

/7 Zi// Free naey) ‘
Lo - ——wsert not rkslleft! or , ™ '-'., | 3raé Z‘hem Aofh/ ;

|

TR0
,‘.‘,lu.‘ S el ‘

> 1
svnch.releasel ‘

ﬂ‘ dine ‘ —

synch.acquire(?mulex

,‘-.'l. ks e (.' ’ff.‘ ks --',,.":'f ralse } ge/ed\se
svnch.no fvl”? conds left -
kvl | both Forks

synch.notify(? conds|right|)

synch.release(?mutes

think

Simultaneous Acquisition
In Harmony

mutex = synch.Lock()
forks = [False,| * N
conds = [synch.Condition(?mutez),] * N
def diner(which):
let left, right = (which, (which + 1) % N):
while choose({ False, True }): -
svnch.acquire(?mulex) ‘ :
while forks|left| oxr forks|right): | wat For
if forks|left): AOZ(A
synch.wait(? conds|left|, 7mutex)
if forks[right]: ' /‘ohé s Zo
synch.wait(? conds|right|, ?mutex)
assert not (forks|left| or forksiright|) | Ae CZ\/CZ/./QA/Q
forks|left] = forks|right] = True | — ——
synch.release(?mutex) |
dine
synch.acquire(?mulexr)
forks|left| = forks|right] = False
svnch.notify(? conds|left]);

synch.notify(? conds|right|)
synch.release(?mutexr)

think

Simultaneous Acquisition
In Harmony

mutex = synch.Lock()
forks = [False,| * N
conds = [synch.Condition(?mutez),] * N |

def diner(which):
let left, right = (which, (which + 1) % N):
while choose({ False, True }):

svnch.acquire(”mulex) Wat for

while forks|left]: [ef? Fork
synch.wait(? conds|left], 7mutez) “h

while forks[right|: =
synch.wait(? conds[right], Tmutex) wat £or

assert not (forks|left| or forks|right|) /‘/:9/75 Fork

f(n“k.%:irtﬂ] = fnrks[rf_th: = True — ———

synch.release(?mutex)

dine

synch.acquire(? muler) tWouldn 7

forks|left| = forks|right] = False

. Zhis be just
svnch.notify(? conds|left]); J
S T 7
synch.notify(? conds|right|) as good:
synch.release(?muter)

think

Simultaneous Acquisition
In Harmony

mutex = synch.Lock()
forks = [False,| * N
conds = [synch.Condition(?mutez),] * N |
def diner(which):
let left, right = (which, (which + 1) % N):
while choose({ False, True }):
svunch.acquire(?mulex) Wat for

Cortn 2 while forks|left]: Jef % Ford
it(? ?
Hierne); .synch.walt(. cor.zds[left], ’mutex) fhron
while forks[right|:
armony! synch.wait(? conds[right], Tmutex) wat £or
N T -assert not (Jorls|lefi] or Jorks|right]) right Fork
forks|left| = forks|right] = True
synch.release(?mutex)
dine
synch.acquire(?muler)
forks|left| = forks|right] = False
svnch.notify(? conds|left]);

synch.notify(? conds|right|)
synch.release(?muter)

think

Avoiding Deadlock:
The Bankers Algorithm

E.W. Dijkstra & N. Habermann

@ Sum of maximum resources
needs can exceed the total
available resources

o if there exists a schedule of
loan fulfillments such that

» all clients receive their
maximal loan

» build their house

» pay back all the loan

® More efficient than acquiring
atomically all resources

Living dangerously:
Safe, Unsafe, Deadlocked

Unsafe

A systems trajectory
through its state space

@ Safe: For any possible set of resource

requests, there exists one safe schedule
of processing requests that succeeds in
granting all pending and future requests

o no deadlock as long as system can
enforce that safe schedule!

Unsafe: There exists a set of (pending
and future) resource requests that leads
to a deadlock, independent of the
schedule in which requests are processed

o unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

Proactive Responses to Deadlock: Avoidance

The Bankers Algorithm

E.W. Dijkstra & N. Habermann

@ Processes declare worst-case needs (big assumption!), but then ask
for what they "really” need, a little at a time

o Sum of maximum resource needs can exceed total available resources

@ Algorithm decides whether to grant a request
o Build a graph assuming request granted

o Check whether state is safe (i.e., whether RAG is reducible)

» A state is safe if there exists some permutation of [Py, Py,...,Pn] such that, for each P;, the
resources that P; can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for P; preceding P; in the permutation

v/ Available resources can satisfy Pis needs
v/ Once P; finishes, 5 available resources
SGFQ? v/ Now, available resources can satisfy Pos needs
’ v/ Once Py finishes, 10 available resources
v/ Now, available resources can satisfy Pss needs

Yes! Schedule: [P;, Po, Ps]

Proactive Responses to Deadlock: Avoidance

The Bankers Algorithm

E.W. Dijkstra & N. Habermann

@ Processes declare worst-case needs (big assumption!), but then ask
for what they "really” need, a little at a time

o Sum of maximum resource needs can exceed total available resources

@ Algorithm decides whether to grant a request

o Build a graph assuming request granted

o Check whether state is safe (i.e., whether RAG is reducible)

» A state is safe if there exists some permutation of [Py, Py,...,Pn] such that, for each P;, the
resources that P; can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for P; preceding P; in the permutation

Suppose P2 asks for 2 resources

If granted, is the resulting state

36 Safe?
B EEE——

Proactive Responses to Deadlock: Avoidance

The Bankers Algorithm

E.W. Dijkstra & N. Habermann

@ Processes declare worst-case needs (big assumption!), but then ask
for what they "really” need, a little at a time

o Sum of maximum resource needs can exceed total available resources

@ Algorithm decides whether to grant a request

o Build a graph assuming request granted
n Check whether state is safe (i.e., whether RAG is reducible)

» A state is safe if there exists some permutation of [Py, Py,...,Pn] such that, for each P;, the
resources that P; can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for P; preceding P; in the permutation

o If so, request is granted; otherwise, requester must wait
37

The Bankers books

Assume n processes, 1 resources

Maxi; = max amount of units of resource Rj needed by P;

o MaxClaim;: Vector of size m such that MaxClaimi[j] = Maxi

Holdsi; = current allocation of Rj held by P;

0 HasNow; = Vector of size m such that HasNowi[j] = Holds;;
Available = Vector of size m such that Available[]j] = units of R; available

A request by Py is safe if, assuming the request is granted,
there is a permutation of P;, P2,..., Pn such that, for all Piin the

permutation
1

Needs; = MaxClaim; - HasNow; < Avail + Z HasNow;

=l
38

