
Deadlock only if they all hold

Bounded resources

Acquire can block invoker


No preemption

the resource is mine, MINE! (until I release it)


Wait while holding

holds one resource while waiting for another


Circular waiting

Pi waits for Pi+1 and holds a resource requested by Pi-1 
sufficient if one instance of each resource

Necessary conditions  
for deadlock
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Deadlock Prevention: 
Negate 

Eliminate “Acquire can block invoker/bounded 
resources”


Make resources sharable without locks

Wait-free synchronization


The Harmony book (Chapter 23) has examples of 
non-blocking data structures


Have sufficient resources available, so acquire 
never delays (duh!)


E.g., use an unbounded queue, or make sure that 
queue is “large enough”
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Deadlock Prevention: 
Negate 

Allow preemption

Requires mechanisms to save/restore resource 
state


multiplexing (registers, memory, etc).   VS.

undo/redo (database transaction processing)


Allow OS to preempt resources of waiting 
processes

Allow OS to preempt resources of requesting 
processes
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Deadlock Prevention: 
Negate 

Eliminate Hold & Wait

Don’t hold resource while waiting for others


Rewrite code
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Q: If bar() does not access shared variables 
and does not need a lock, are these the same?


def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		bar();	
		doOtherStuff();	
		release(?mutex);

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		release(?mutex);	
		bar();	
		acquire(?mutex);	
		doOtherStuff();	
		release(?mutex);

code in some other module that 
may acquire more locks



Deadlock Prevention: 
Negate 

Eliminate Hold & Wait

Don’t hold resource while waiting for others


Rewrite code
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A: No! In the code on the right, the state 
that the mutex protects can change 
between doSomeStuff and doOtherStuff

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		bar();	
		doOtherStuff();	
		release(?mutex);

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		release(?mutex);	
		bar();	
		acquire(?mutex);	
		doOtherStuff();	
		release(?mutex);

code in some other module that 
may acquire more locks



Deadlock Prevention: 
Negate 

Eliminate Hold & Wait

Don’t hold resource while waiting for others


Rewrite code

Request all resources before execution begins… 
but

Processes don’t know what they need 

No mechanism to request all resources at the same time

Starvation (if waiting on popular resources)

Low utilization (if resources needed only briefly)


Release all resources before asking new ones

Still has the last two problems…
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Deadlock Prevention: 
Negate 

Eliminate circular waiting

Single lock for the entire system?

Impose a total order on the sequence in which 
different types of resources can be acquired


Each resource type is assigned to a level 

Makes cycles impossible, since a cycle needs to go 
from low to high level resources, and then back to low

Can be relaxed to a strict partial order* if all 
resources “of the same level”  are acquired together 
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*a binary relation < that is: 
1.  irreflexive: not  a < a
2.  asymmetric: if , then not  a < b b < a

3.  transitive: if  and , then  a < b b < c a < c



Havender’s Scheme (OS/360)
Hierarchical Resource Allocation


Every resource is associated with a level.


Rule H1:  All resources from a given level 
must be acquired using a single request.


Rule H2:  After acquiring (and holding) from 
level Lj, must not acquire from Li where i<j.


Rule H3:  May not release from Li unless 
already released from Lj where j>i.

L1

L2

Ln
ac

qu
ire

re
le

as
eExample of allowed sequence:

1.   acquire(W@L1, X@L1)
2.   acquire(Y@L3)
3.   release(Y@L3)
4.   acquire(Z@L2)



Dining Philosophers (Again)
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Pi: do forever

acquire( F(i) );

acquire( G(i) );

eat;

release( F(i) );

release( G(i) );


 end

G(i): max(i, (i+1) mod 5)

F(i): min(i, (i+1) mod 5)



Ordering Resources 

in Harmony 

or



Simultaneous Acquisition 

in Harmony 

   Wait for both      
        forks and  then   
 grab them both! 

<latexit sha1_base64="dxnn2o1m22ZgdN5Qnc1Ep1YucSs=">AAAB6XicdVDLSgMxFM3UV62vqks3oUUQhCHTVtvuim5cVrEP6Awlk2ba0MyDJCMMQ//AjaAibv0jd/0bM62Cih64cDjnXu69x404kwqhuZFbWV1b38hvFra2d3b3ivsHXRnGgtAOCXko+i6WlLOAdhRTnPYjQbHvctpzp5eZ37ujQrIwuFVJRB0fjwPmMYKVlm7s2bBYRmYToWYTQWSiarVuVTLSqFXPatAy0QLlVsk+fZy3kvaw+G6PQhL7NFCEYykHFoqUk2KhGOF0VrBjSSNMpnhMB5oG2KfSSReXzuCxVkbQC4WuQMGF+n0ixb6Uie/qTh+rifztZeJf3iBWXsNJWRDFigZkuciLOVQhzN6GIyYoUTzRBBPB9K2QTLDAROlwCjqEr0/h/6RbMa1zs3at07gAS+TBESiBE2CBOmiBK9AGHUCAB+7BE3g2psaD8WK8LltzxufMIfgB4+0DHUCQvg==</latexit>

}
 Release         

both forks 

<latexit sha1_base64="dxnn2o1m22ZgdN5Qnc1Ep1YucSs=">AAAB6XicdVDLSgMxFM3UV62vqks3oUUQhCHTVtvuim5cVrEP6Awlk2ba0MyDJCMMQ//AjaAibv0jd/0bM62Cih64cDjnXu69x404kwqhuZFbWV1b38hvFra2d3b3ivsHXRnGgtAOCXko+i6WlLOAdhRTnPYjQbHvctpzp5eZ37ujQrIwuFVJRB0fjwPmMYKVlm7s2bBYRmYToWYTQWSiarVuVTLSqFXPatAy0QLlVsk+fZy3kvaw+G6PQhL7NFCEYykHFoqUk2KhGOF0VrBjSSNMpnhMB5oG2KfSSReXzuCxVkbQC4WuQMGF+n0ixb6Uie/qTh+rifztZeJf3iBWXsNJWRDFigZkuciLOVQhzN6GIyYoUTzRBBPB9K2QTLDAROlwCjqEr0/h/6RbMa1zs3at07gAS+TBESiBE2CBOmiBK9AGHUCAB+7BE3g2psaD8WK8LltzxufMIfgB4+0DHUCQvg==</latexit>

}

one condition per fork

initially, no forks are held

if left fork is used, 
wait until free

if right fork is used, 
wait until free



Simultaneous Acquisition 

in Harmony 

Wait for 
both      

    forks to 
be available



Simultaneous Acquisition 

in Harmony 

Wait for  
left fork  

    then  
wait for  
right fork

Wouldn’t 
this be just 

as good?



Simultaneous Acquisition 

in Harmony 

Wait for  
left fork  

    then  
wait for  
right fork

NO!

Run it 
through 
Harmony!



Avoiding Deadlock:  
The Banker’s Algorithm

Sum of maximum resources 
needs can exceed the total 
available resources


if there exists a schedule of 
loan fulfillments such that


all clients receive their 
maximal loan

build their house

pay back all the loan


More efficient than acquiring 
atomically all resources   

E.W. Dijkstra & N. Habermann



Living dangerously: 
Safe, Unsafe, Deadlocked

Safe: For any possible set of resource 
requests, there exists one safe schedule 
of processing requests that succeeds in 
granting all pending and future requests


no deadlock as long as system can 
enforce that safe schedule!


Unsafe: There exists a set of (pending 
and future) resource requests that leads 
to a deadlock, independent of the  
schedule in which requests are processed


unlucky set of requests can force 
deadlock


Deadlocked: The system has at least one 
deadlock  

Safe

Deadlock

Unsafe

A system’s trajectory 

through its state space



Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask 
for what they “really” need, a little at a time


Sum of maximum resource needs can exceed total available resources


Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)


A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the 
resources that  Pi can still request can be satisfied by the currently available resources plus 
the resources currently held by all Pj, for Pj preceding Pi in the permutation  

E.W. Dijkstra & N. Habermann
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Available = 3

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available resources can satisfy P1’s needs

Once P1 finishes, 5 available resources

Now, available resources can satisfy P0’s needs

Once P0 finishes, 10 available resources

Now,  available resources can satisfy P3’s needs

Yes!  Schedule: [P1, P0, P3]



Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask 
for what they “really” need, a little at a time


Sum of maximum resource needs can exceed total available resources


Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)


A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the 
resources that  Pi can still request can be satisfied by the currently available resources plus 
the resources currently held by all Pj, for Pj preceding Pi in the permutation  

E.W. Dijkstra & N. Habermann
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Available = 3

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Suppose P2 asks for 2 resources 
If granted, is the resulting state

Safe?



Processes declare worst-case needs (big assumption!), but then ask 
for what they “really” need, a little at a time


Sum of maximum resource needs can exceed total available resources


Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)


A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the 
resources that  Pi can still request can be satisfied by the currently available resources plus 
the resources currently held by all Pj, for Pj preceding Pi in the permutation  

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm
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Available = 3

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available = 1

Process Max 
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 4 5

If so, request is granted; otherwise, requester must wait

E.W. Dijkstra & N. Habermann



The Banker’s books
Assume  processes,  resources

Maxij = max amount of units of resource Rj needed by Pi


MaxClaimi: Vector of size  such that MaxClaimi[j] = Maxij


Holdsij = current allocation of Rj held by Pi

HasNowi =  Vector of size  such that HasNowi[j] = Holdsij


Available = Vector of size  such that Available[j] = units of Rj available


A request by Pk is safe if, assuming the request is granted, 
there is a permutation of P1, P2,…, Pn  such that, for all Pi in the 
permutation

n m

m

m

m

Needsi =     
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MaxClaimi - HasNowi

i�1X

j=1

         +      HasNowj≤ Avail


