
Deadlock only if they all hold

Bounded resources

Acquire can block invoker

No preemption

the resource is mine, MINE! (until I release it)

Wait while holding

holds one resource while waiting for another

Circular waiting

Pi waits for Pi+1 and holds a resource requested by Pi-1
sufficient if one instance of each resource

Necessary conditions
for deadlock

1

2

3

4

Deadlock Prevention:
Negate

Eliminate “Acquire can block invoker/bounded
resources”

Make resources sharable without locks

Wait-free synchronization

The Harmony book (Chapter 23) has examples of
non-blocking data structures

Have sufficient resources available, so acquire
never delays (duh!)

E.g., use an unbounded queue, or make sure that
queue is “large enough”

1

Deadlock Prevention:
Negate

Allow preemption

Requires mechanisms to save/restore resource
state

multiplexing (registers, memory, etc). VS.

undo/redo (database transaction processing)

Allow OS to preempt resources of waiting
processes

Allow OS to preempt resources of requesting
processes

2

Deadlock Prevention:
Negate

Eliminate Hold & Wait

Don’t hold resource while waiting for others

Rewrite code

3

Q: If bar() does not access shared variables
and does not need a lock, are these the same?

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		bar();	
		doOtherStuff();	
		release(?mutex);

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		release(?mutex);	
		bar();	
		acquire(?mutex);	
		doOtherStuff();	
		release(?mutex);

code in some other module that
may acquire more locks

Deadlock Prevention:
Negate

Eliminate Hold & Wait

Don’t hold resource while waiting for others

Rewrite code

3

A: No! In the code on the right, the state
that the mutex protects can change
between doSomeStuff and doOtherStuff

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		bar();	
		doOtherStuff();	
		release(?mutex);

def	foo():	
		acquire(?mutex);	
		doSomeStuff();	
		release(?mutex);	
		bar();	
		acquire(?mutex);	
		doOtherStuff();	
		release(?mutex);

code in some other module that
may acquire more locks

Deadlock Prevention:
Negate

Eliminate Hold & Wait

Don’t hold resource while waiting for others

Rewrite code

Request all resources before execution begins…
but

Processes don’t know what they need

No mechanism to request all resources at the same time

Starvation (if waiting on popular resources)

Low utilization (if resources needed only briefly)

Release all resources before asking new ones

Still has the last two problems…

3

Deadlock Prevention:
Negate

Eliminate circular waiting

Single lock for the entire system?

Impose a total order on the sequence in which
different types of resources can be acquired

Each resource type is assigned to a level

Makes cycles impossible, since a cycle needs to go
from low to high level resources, and then back to low

Can be relaxed to a strict partial order* if all
resources “of the same level” are acquired together

4

*a binary relation < that is:
1. irreflexive: not a < a
2. asymmetric: if , then not a < b b < a

3. transitive: if and , then a < b b < c a < c

Havender’s Scheme (OS/360)
Hierarchical Resource Allocation

Every resource is associated with a level.

Rule H1: All resources from a given level
must be acquired using a single request.

Rule H2: After acquiring (and holding) from
level Lj, must not acquire from Li where i<j.

Rule H3: May not release from Li unless
already released from Lj where j>i.

L1

L2

Ln
ac

qu
ire

re
le

as
eExample of allowed sequence:

1. acquire(W@L1, X@L1)
2. acquire(Y@L3)
3. release(Y@L3)
4. acquire(Z@L2)

Dining Philosophers (Again)

0

4

32

1

1

2

3

4

0

Pi: do forever

acquire(F(i));

acquire(G(i));

eat;

release(F(i));

release(G(i));

 end

G(i): max(i, (i+1) mod 5)

F(i): min(i, (i+1) mod 5)

Ordering Resources

in Harmony

or

Simultaneous Acquisition

in Harmony

 Wait for both
 forks and then
 grab them both!

<latexit sha1_base64="dxnn2o1m22ZgdN5Qnc1Ep1YucSs=">AAAB6XicdVDLSgMxFM3UV62vqks3oUUQhCHTVtvuim5cVrEP6Awlk2ba0MyDJCMMQ//AjaAibv0jd/0bM62Cih64cDjnXu69x404kwqhuZFbWV1b38hvFra2d3b3ivsHXRnGgtAOCXko+i6WlLOAdhRTnPYjQbHvctpzp5eZ37ujQrIwuFVJRB0fjwPmMYKVlm7s2bBYRmYToWYTQWSiarVuVTLSqFXPatAy0QLlVsk+fZy3kvaw+G6PQhL7NFCEYykHFoqUk2KhGOF0VrBjSSNMpnhMB5oG2KfSSReXzuCxVkbQC4WuQMGF+n0ixb6Uie/qTh+rifztZeJf3iBWXsNJWRDFigZkuciLOVQhzN6GIyYoUTzRBBPB9K2QTLDAROlwCjqEr0/h/6RbMa1zs3at07gAS+TBESiBE2CBOmiBK9AGHUCAB+7BE3g2psaD8WK8LltzxufMIfgB4+0DHUCQvg==</latexit>

}
 Release

both forks

<latexit sha1_base64="dxnn2o1m22ZgdN5Qnc1Ep1YucSs=">AAAB6XicdVDLSgMxFM3UV62vqks3oUUQhCHTVtvuim5cVrEP6Awlk2ba0MyDJCMMQ//AjaAibv0jd/0bM62Cih64cDjnXu69x404kwqhuZFbWV1b38hvFra2d3b3ivsHXRnGgtAOCXko+i6WlLOAdhRTnPYjQbHvctpzp5eZ37ujQrIwuFVJRB0fjwPmMYKVlm7s2bBYRmYToWYTQWSiarVuVTLSqFXPatAy0QLlVsk+fZy3kvaw+G6PQhL7NFCEYykHFoqUk2KhGOF0VrBjSSNMpnhMB5oG2KfSSReXzuCxVkbQC4WuQMGF+n0ixb6Uie/qTh+rifztZeJf3iBWXsNJWRDFigZkuciLOVQhzN6GIyYoUTzRBBPB9K2QTLDAROlwCjqEr0/h/6RbMa1zs3at07gAS+TBESiBE2CBOmiBK9AGHUCAB+7BE3g2psaD8WK8LltzxufMIfgB4+0DHUCQvg==</latexit>

}

one condition per fork

initially, no forks are held

if left fork is used,
wait until free

if right fork is used,
wait until free

Simultaneous Acquisition

in Harmony

Wait for
both

 forks to
be available

Simultaneous Acquisition

in Harmony

Wait for
left fork

 then
wait for
right fork

Wouldn’t
this be just

as good?

Simultaneous Acquisition

in Harmony

Wait for
left fork

 then
wait for
right fork

NO!

Run it
through
Harmony!

Avoiding Deadlock:
The Banker’s Algorithm

Sum of maximum resources
needs can exceed the total
available resources

if there exists a schedule of
loan fulfillments such that

all clients receive their
maximal loan

build their house

pay back all the loan

More efficient than acquiring
atomically all resources

E.W. Dijkstra & N. Habermann

Living dangerously:
Safe, Unsafe, Deadlocked

Safe: For any possible set of resource
requests, there exists one safe schedule
of processing requests that succeeds in
granting all pending and future requests

no deadlock as long as system can
enforce that safe schedule!

Unsafe: There exists a set of (pending
and future) resource requests that leads
to a deadlock, independent of the
schedule in which requests are processed

unlucky set of requests can force
deadlock

Deadlocked: The system has at least one
deadlock

Safe

Deadlock

Unsafe

A system’s trajectory

through its state space

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask
for what they “really” need, a little at a time

Sum of maximum resource needs can exceed total available resources

Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)

A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the
resources that Pi can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for Pj preceding Pi in the permutation

E.W. Dijkstra & N. Habermann

35

Available = 3

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available resources can satisfy P1’s needs

Once P1 finishes, 5 available resources

Now, available resources can satisfy P0’s needs

Once P0 finishes, 10 available resources

Now, available resources can satisfy P3’s needs

Yes! Schedule: [P1, P0, P3]

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

Processes declare worst-case needs (big assumption!), but then ask
for what they “really” need, a little at a time

Sum of maximum resource needs can exceed total available resources

Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)

A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the
resources that Pi can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for Pj preceding Pi in the permutation

E.W. Dijkstra & N. Habermann

36

Available = 3

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Suppose P2 asks for 2 resources
If granted, is the resulting state

Safe?

Processes declare worst-case needs (big assumption!), but then ask
for what they “really” need, a little at a time

Sum of maximum resource needs can exceed total available resources

Algorithm decides whether to grant a request

Build a graph assuming request granted

Check whether state is safe (i.e., whether RAG is reducible)

A state is safe if there exists some permutation of [P1, P2,…,Pn] such that, for each Pi, the
resources that Pi can still request can be satisfied by the currently available resources plus
the resources currently held by all Pj, for Pj preceding Pi in the permutation

Proactive Responses to Deadlock: Avoidance

The Banker’s Algorithm

37

Available = 3

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Safe?

Available = 1

Process Max
Need

Holds Needs

P0 10 5 5

P1 4 2 2

P2 9 4 5

If so, request is granted; otherwise, requester must wait

E.W. Dijkstra & N. Habermann

The Banker’s books
Assume processes, resources

Maxij = max amount of units of resource Rj needed by Pi

MaxClaimi: Vector of size such that MaxClaimi[j] = Maxij

Holdsij = current allocation of Rj held by Pi

HasNowi = Vector of size such that HasNowi[j] = Holdsij

Available = Vector of size such that Available[j] = units of Rj available

A request by Pk is safe if, assuming the request is granted,
there is a permutation of P1, P2,…, Pn such that, for all Pi in the
permutation

n m

m

m

m

Needsi =

38

MaxClaimi - HasNowi

i�1X

j=1

 + HasNowj≤ Avail

