Prelim Interlude



@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

Addresses from
0X0 to OXFFFF FFFF



@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

What is the address of
the next to last word?

Addresses from
0xO to OXFFFF FFFF

N N0 0O PO O MM




@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

What is the address of
the next to last word?

Addresses from
0xO to OXFFFF FFFF

N N0 O PO O MM




@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

What is the address of
the next to last word?

Addresses from
0xO to OXFFFF FFFF

OXFFFF FFF8

e N U1 NN 0O O PO OM ™M




@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

If the stack pointer is at OxFFFE 8D70
and three words are pushed onto the
stack, what is the new value?

3 words = 12 bytes
downward

OXFFFE 8D70 - OxB = OXFFFE 8D64




@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

User process occupies bottom half of the 32-bit
address space (i.e., the lower addresses), while
the kernel occupies the top half of the same

address space (i.e., the higher addresses)

What is the address where the kernel starts
(i.e. the lowest address in the kernel)?

OXFFFF FFFF / 2
Right shift by one position



@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

User process occupies bottom half of the 32-bit
address space (i.e., the lower addresses), while
the kernel occupies the top half of the same

address space (i.e., the higher addresses)

What is the address where the kernel starts
(i.e. the lowest address in the kernel)?

OXFFFF FFFF / 2
Right shift by one position



@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

User process occupies bottom half of the 32-bit
address space (i.e., the lower addresses), while
the kernel occupies the top half of the same

address space (i.e., the higher addresses)

What is the address where the kernel starts
(i.e. the lowest address in the kernel)?

OX7FFF FFFF + 1 = Ox8000 0000



@ 32bit architecture, byte addressable. The stack
grows down from high to low addresses

User process occupies bottom half of the 32-bit
address space (i.e., the lower addresses), while
the kernel occupies the top half of the same

address space (i.e., the higher addresses)

What is the address of the last byte of a user
process (i.e. the highest user space address)?



The table on the right shows the interrupt (trap) vector. Index Address

Suppose the CPU is executing in user space. The program counter is 0  OxB80BECEBO
Ox00006FCS8, the user stack pointer is OXTFF277EOD, and the
kernel stack pointcr is OXFFFA37CO. Now a disk interrupt occurs,

| Ox8050D330

pushmg the user’s PC, SP, and PSW onto the kernel stack. 0x80248280
The interrupt handler pushcs 5 gcncml purpose registers onto the : 0x80001079

stack. Each push instruction occupices 4 bytes,
Ox8052C420

Answer the following questions about the CPU’s state at this moment:

Type
System Call
Dinde-by-Zero
Page Fault
Disk Interrupt

Clock Interrupt

What is the value of the user stack pointer?

OX7FF277EQ



The table on the right shows the interrupt (trap) vector. Index Address Type

Suppose the CPU is executing in user space. The program counter is 0  OxB80BECEBO System Call
Ox00006FC8, the user stack pointer is OXTFFR77EOQ, and the
kernel stack pointcr is OXFFFASYCO. Now a disk interrupt occurs,

! Ox8050D330 Divade-by-Zero

pushmg the user’s PC, SP, and PSW onto the kernel stack. 0x80248280 Page Fault

The interrupt handler pushcs 5 gcncml purpose registers onto the : 0x80001079

Disk Interrupt
stack. Each push instruction occupices 4 bytes,

. , % 3 Ox8082C420 (Jock Interrupt
Answer the following questions about the CPU’s state at this moment:

What is the value of the kernel stack pointer?

KSP starts at OxFFFA37CO

.
Users PC, SP, PSW

_ 5 general purpose registers

Push

8 words — downwards

OXFFFA37C0O - Ox20 = OxXFFFA37A0




The table on the right shows the interrupt (trap) vector. Index Address Type

Suppose the CPU is executing in user space. The program counter is )  O0xB806ECEBO System Call
Ox00006FC8, the user stack pointer is OXTFFR77EOQ, and the
kernel stack pmntcr is OXFFFA37CO. Now a disk interrupt occurs,

Ox8080D330 Divade-by-Zero

pushmg the user’s PC, SP, and PSW onto the kernel stack. 0x80248280 Page Fault

The interrupt handler pushcs 5 gcncml purpose registers onto the : 0x80001079

Disk Interrupt
stack. Each push instruction occupices 4 bytes,

. , % 3 Ox8082C420 (Jock Interrupt
Answer the following questions about the CPU’s state at this moment:

What is the value of value of the PC?
PC starts at O0x80001079
5 push instructions, each 4 bytes = 20 byftes

Ox80001079 + Ox14 = Ox8000108D




The table on the right shows the interrupt (trap) vector.

Suppose the CPU is executing in user space. The program counter is
Ox00006FCS8, the user stack pointer is OXTFF277EO, and the
kernel stack pointcr is OXFFFA37CO. Now a disk interrupt occurs,
pushmg the user’s PC, SP, and PSW onto the kernel stack.

The interrupt handler pushcs 5 gcncml purpose registers onto the
stack. Each push instruction occupices 4 bytes.

Answer the following questions about the CPU’s state at this moment:

Index

0

1

Address
O0x806ECEBO
0x80850D330
0x80248280
Ox80001079
Ox8052C420

Type
System Call
Divade-by-Zero
Page Fault
Disk Interrupt

Clock Interrupt

Now, suppose the disk interrupt handler has completed and has just executed the return-from-interrupt
instruction. Answer the following questions about the CPU state at that time.

What is the value of the user SP?

OX7FF277EO



The table on the right shows the interrupt (trap) vector.

Suppose the CPU is executing in user space. The program counter is
Ox0O0006FC8, the user stack pointer is OXTFFR7TEOQ, and the
kernel stack pointcr is OXFFFASYCO. Now a disk interrupt occurs,
pushmg the user’s PC, SP, and PSW onto the kernel stack.

The interrupt handler pushcs 5 gcncml purpose registers onto the
stack. Each push instruction occupices 4 bytes.

Answer the following questions about the CPU’s state at this moment:

Index

0

1

Address
O0x806ECEBO
0x80850D330
0x80248280
Ox80001079
Ox8052C420

Type
System Call
Divade-by-Zero
Page Fault
Disk Interrupt

Clock Interrupt

Now, suppose the disk interrupt handler has completed and has just executed the return-from-interrupt
instruction. Answer the following questions about the CPU state at that time.

What is the value of the kernel SP?

OXFFFA37CO



The table on the right shows the interrupt (trap) vector.

Suppose the CPU is executing in user space. The program counter is
Ox00006FC8, the user stack pointer is OX7TFFRT77EQ, and the
kernel stack pointcr is OXFFFA37CO. Now a disk interrupt occurs,
pushmg the user’s PC, SP, and PSW onto the kernel stack.

The interrupt handler pushcs 5 gcncml purpose registers onto the
stack. Each push instruction occupices 4 bytes.

Answer the following questions about the CPU’s state at this moment:

Index

0

1

Address
O0x806ECEBO
0x80850D330
0x80248280
Ox80001079
Ox8052C420

Type
System Call
Divade-by-Zero
Page Fault
Disk Interrupt

Clock Interrupt

Now, suppose the disk interrupt handler has completed and has just executed the return-from-interrupt
instruction. Answer the following questions about the CPU state at that time.

What is the value of the PC?

Ox00006FC8



-~ result = 0

#include <stdio.h> /* declares printf() x/
#include <unistd.h> /x declares fork() x/ | i=0

int main() {

int s

int pid;

int result = 0; result = 0

for (i=0; i<2; i++) pid = 33
pid = fork();
result ++; ‘ result = 0
printf ("result = %d\n", result); pid = O

}
if (pid == 0) {
printf ("result = %d\n", result);

result++

}

return 9;

How many times will the
value of result be printed?

First value(s)? Last value(s)?



result = 0

o 32,
#include <stdio.h> /* declares printf() x/ —
#include <unistd.h> /x declares fork() x/ | i=0

int main() {
int i:
int pid;
int result = 0;
for (i=0; i<2; i++)

result =1
Pld = 33

pid = fork();
result ++;
printf ("result , result);

result =1

}
if (pid == 0) {
printf ("result = %d\n", result); i=1

result++

}

return 9;

result =1
pid = 34

How many times will the oy
value of result be printed?  °°

result =1
pid = 35

result++ result =1

" pid =0

First value(s)? Last value(s)?




result = 0

o 32,
#include <stdio.h> /* declares printf() x/ —
#include <unistd.h> /x declares fork() x/ | i=0

int main() {

int s
int pid; w
int result = 0; rgsu r
for (i=0; i<2; i++) pid = 33
pid = fork();
result ++; result =1
printf ("result , result); pid =0
¥ result++
if (pid == 0) {
printf ("result = %d\n", result); i=1
}
return 0;
. . result = 2
How many times will the / pid = 34
result = 2
result = 2

value of result be printed?  ™-°

pid = 35

First value(s)? Last value(s)? Erini? e

result = 2




result = 0

o 32,
#include <stdio.h> /* declares printf() x/ —
#include <unistd.h> /x declares fork() x/ | i=0

int main() {

int s
int pid; w
int result = 0; rgsu r
for (i=0; i<2; i++) pid = 33
pid = fork();
result ++; result =1
printf ("result , result); pid =0
¥ result++
if (pid == 0) {
printf ("result = %d\n", result); i=1
}
return 0;
. . result = 2
How many times will the / pid = 34
result = 2
result = 2

value of result be printed?  *4=°

pid = 35

Print? result++

First value(s)? Last value(s)? 1HIR]

result = 2






