
Peterson’s Algorithm:
Flags and

Turns!
Prevents out-of-order execution

 I’d like to enter…
 …but you go first!

 Wait until alone or it’s my turn

 Leave #states = 104 diameter = 5
#components: 37
no issues found

What about a proof?

To understand why it works…

We need to show that, for any execution, all
states reached satisfy mutual exclusion

i.e., that mutual exclusion is an invariant

See the Harmony book for a proof!

or come talk to me!

Peterson’s Reconsidered

Mutual Exclusion can be implemented with
atomic LOAD and STORE instructions

multiple STOREs and LOADs

Peterson’s can be generalized to more than 2
processes (as long as the number of
processes is known) but it is a mess…

…and even more STOREs and LOADs

Too inefficient in practice!

Peterson’s even more
Reconsidered!

It assumes LOAD and STORE instructions are
atomic, but that is not guaranteed on a real
processor

Suppose is a 64-bit integer, and you have a
32-bit CPU

Then requires 2 STORES (and reading
two LOADs

because it occupies 2 words!

Same holds if is a 32-bit integer, but it is
not aligned on a word boundary

x

x = 0 x

x

Concurrent Writing
Say is a 32 bit word @ 0x12340002

Consider two threads, T1 and T2

T1: 0xFFFFFFFF (i.e.,)

T2:

After T1 and T2 are done, may be any of

0, 0xFFFFFFFF, 0xFFFF0000, or 0X0000FFFF

The outcome of concurrent write operations to
a variable is undefined

x

x = x = − 1
x = 0

x

Concurrent Reading
Say is a 32 bit word @ 0x12340002, initially 0

Consider two threads, T1 and T2

T1: 0xFFFFFFFF (i.e.,)

T2: (i.e., T2 reads)

After T1 and T2 are done, may be any of

0, 0xFFFFFFFF, 0xFFFF0000, or 0X0000FFFF

The outcome of concurrent read and write
operations to a variable is undefined

x

x = x = − 1
y = x x

y

Data Race

When two threads access the same
variable…

…and at least one is a STORE…

…then the semantics of the outcome is
undefined

Harmony’s “sequential”
statement

sequential

Ensures that LOADs and STOREs are atomic

concurrent operations appear to be executed
sequentially

this is called sequential consistency

Say s current value is 3; T1 STOREs 4 into
; T2 LOADs

with atomic LOAD/STORE, T2 reads 3 or 4

with modern CPUs/compilers, what T2 reads is
undefined

x′

x x

<latexit sha1_base64="l8BzNy/WKkKjTuFh+7fCIAiTug4=">AAAB8HicdVDLSgMxFL1TX7W+prp0EyyCCxlm2lJdCBbcuKxgbaEtJZNm2tBMZkgyShn6H25E3Cj4Jf6Cf+EnmE51UR8HAodzTrj3XD/mTGnXfbdyS8srq2v59cLG5tb2jl3cvVFRIgltkohHsu1jRTkTtKmZ5rQdS4pDn9OWP76Y+a1bKhWLxLWexLQX4qFgASNYG6lvF9MuDZFOpDhGAcdDNe3bJc9xM6D/Sen8AzI0+vZbdxCRJKRCE46V6nhurHsplpoRTqeFbqJojMkYD2maLTxFh0YaoCCS5gmNMnUhh0OlJqFvkiHWI/XTm4l/eZ1EB6e9lIk40VSQ+aAg4UhHaNYeDZikRPOJIZhIZjZEZIQlJtrcqGCqu06lVvUqLvpNvqvflB2v5lSvyqX62fwGkId9OIAj8OAE6nAJDWgCgTt4gGd4saR1bz1aT/Nozvr6swcLsF4/AUD0kMs=</latexit>

turn, flags

Sequential Consistency

Java has a similar notion

volatile int x (not the same as in C/C++)

Loading/Storing sequentially consistent
variables is more expensive than loading/
storing ordinary variables

it restricts CPU or compiler optimizations

So, what do we do?

Interlock Instructions

Machine instructions that do multiple shared
memory accesses atomically

TestAndSet s

returns the old value of s (LOAD r0,s)

sets s to True (STORE s, 1)

Entire operation is atomic

other machine instructions cannot interleave

Harmony Interlude:
Pointers

If is a shared variable, is the address
of

If is a shared variable, and ,
then we say that is a pointer to

Finally, refers to the value of

x ?x
x

p p = = ?x
p x

!p x

Test-and-Set in Harmony

For example:

lock1 = False
lock2 = True
r1 = test_and_set(?lock1)
r2 = test_and_set(?lock2)

assert lock1 and lock2
assert (not r1) and r2

Recall: bad lock
implementation

 Test..
 ..and setTest and set

not
atomic!!

A good implementation

(“Spinlock”)

Same idea
as before,
but now
with an
atomic

test&set!
Lock is repeatedly

“tried”, checking on a
condition in a tight
loop (“spinning”)

Locks

Think of locks as “baton passing”

at most one thread can “hold” False

Specifying a Lock

uses atomically
to specify the
behavior of
these methods
when executed
in isolation

An object, and
the behavior of

the methods that
are invoked on it

Locks and

Critical Sections

Two important invariants

cs holds the lock

At most one thread can hold the lock

T@ ⇒ T

Implementing* a lock
*Just one way of doing so

Specification of the
CPU’s test-and_set

functionality

<latexit sha1_base64="4MKtofzNDohmohmM71ndwLoIpw0=">AAAB6XicdVDLSgNBEOyNrxhfUY9eBoPgaZlNoom3oBePUcwDkhBmJ7PJkNnZZWZWCEv+wIsHRbz6R978GycPQUULGoqqbrq7/FhwbTD+cDIrq2vrG9nN3Nb2zu5efv+gqaNEUdagkYhU2yeaCS5Zw3AjWDtWjIS+YC1/fDXzW/dMaR7JOzOJWS8kQ8kDTomx0m132s8XsOuVS7hSRNgtFXH1wrMEn1UtRZ6L5yjAEvV+/r07iGgSMmmoIFp3PBybXkqU4VSwaa6baBYTOiZD1rFUkpDpXjq/dIpOrDJAQaRsSYPm6veJlIRaT0LfdobEjPRvbyb+5XUSE1R7KZdxYpiki0VBIpCJ0OxtNOCKUSMmlhCquL0V0RFRhBobTs6G8PUp+p80i6537pZvyoXa5TKOLBzBMZyCBxWowTXUoQEUAniAJ3h2xs6j8+K8LlozznLmEH7AefsE/FmNrw==</latexit>

}

Must use an atomic
STORE instruction

<latexit sha1_base64="4MKtofzNDohmohmM71ndwLoIpw0=">AAAB6XicdVDLSgNBEOyNrxhfUY9eBoPgaZlNoom3oBePUcwDkhBmJ7PJkNnZZWZWCEv+wIsHRbz6R978GycPQUULGoqqbrq7/FhwbTD+cDIrq2vrG9nN3Nb2zu5efv+gqaNEUdagkYhU2yeaCS5Zw3AjWDtWjIS+YC1/fDXzW/dMaR7JOzOJWS8kQ8kDTomx0m132s8XsOuVS7hSRNgtFXH1wrMEn1UtRZ6L5yjAEvV+/r07iGgSMmmoIFp3PBybXkqU4VSwaa6baBYTOiZD1rFUkpDpXjq/dIpOrDJAQaRsSYPm6veJlIRaT0LfdobEjPRvbyb+5XUSE1R7KZdxYpiki0VBIpCJ0OxtNOCKUSMmlhCquL0V0RFRhBobTs6G8PUp+p80i6537pZvyoXa5TKOLBzBMZyCBxWowTXUoQEUAniAJ3h2xs6j8+K8LlozznLmEH7AefsE/FmNrw==</latexit>

}

Specification Implementation

What an abstraction
does How the abstraction

does it

Using a lock for a
critical section

Spinlocks and

Time Sharing

Spinlocks work well when threads on different
cores need to synchronize

But what if two threads are on the same core?

when there is no preemption?

all threads may get stuck while one is trying to
obtain the spinlock

when there is preemption?

still delays and a waste of CPU cycles while a
thread is trying to obtain a spinlock

Beyond Spinlocks

We would like to be able to suspend a
thread that is trying to acquire a lock that
is being held

until the lock is ready

A context switch!

Context switching

in Harmony

Harmony allows contexts to be saved and
restored (i.e., context switch)

r = stop p

stops the current thread and stores context
in !p (p must be a pointer).

go (!p) r

adds a thread with the given context (i.e.,
the one pointed by p) to the bag of threads.
Threads resumes from stop expression,
returning r

Lock specification using
stop and go

. acquired: boolean

. suspended: queue of contexts

add stopped context at the end
of queue associated with lock

restart thread at head of queue
and remove it from queue

Similar to Linux
 “futex”:

with no contention
(hopefully the common

case) acquire() and
release() are cheap.
With contention, a
context switch is

required

Lock specification using
stop and go

Choosing Modules in
Harmony

“synch” is the (default) module that has the
specification of a lock

“synchS” is the module that has the stop/go
version of the lock

You can select which one you want”

harmony -m synch=synchS x.hny

“synch” tends to be faster than “synchS”

smaller state graph

Atomic Section ≠

Critical Section

Atomic Section Critical Section

Only one thread can
execute

Multiple threads can execute
concurrently, just not within a

critical section

Rare programming
language paradigm

Ubiquitous: locks available in
many mainstream

programming languages

Good for specifying
interlock instruction

Good for implementing
concurrent data structures

Using Locks
Data structures maintain some invariant

Consider a linked list

There is a head, a tail, and a list of nodes such as
the head points to the first node, tail points to the
last one, and each node points to the next one,
except for the tail, which points to None. However, if
the list is empty, head and tail are both None

You can assume the invariant holds right
after acquiring the lock

You must make sure invariant holds again
right before releasing the lock

Building a

Concurrent Queue

: allocates a new queue

: adds to the tail of queue

: returns

None if is empty, or

 if was at the head of the queue

q = queue.new()
queue.put(q, v) v q

v = queue.get(q)
q

v v

Specifying a

Concurrent Queue

Sequential Concurrent

Example of

using a Queue

enqueue onto v q

dequeue and check

create a queue

Queue implementation, v1
.head
.tail
.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation

create empty queue

allocate node
grab lock

release lock

The Hard
Stuff

Queue implementation, v1
.head
.tail
.lock

.value

.next
.value
.next

.value

.next None

empty queue

release lock

grab lock

free dynamically allocated memory

The Hard
Stuff

How important are
concurrent queues?

All important!

any resource that needs scheduling

CPU ready queue

disk, network, printer waiting queue

lock waiting queue

inter-process communication

Posix pipes: cat file | sort

actor-based concurrency

…

Performance
is

critical!

Testing a

Concurrent Queue?

Ad hoc

Unsystematic

Systematic Testing

Sequential case:

Try all sequences consisting of 1 operation

put or get

Try all sequences consisting of 2 operations

put+put, put+get, get+put, get+get

Try all sequences consisting of 3 operations

…

How do we know if a
sequence is correct?
We run the test program against both the
specification and the implementation

We then perform the same sequence of
operations using the code in both sequential
specification and the implementation and
check if these sequences produce the same
behaviors (e.g., they return the same values)

Systematic Testing
Concurrent case:

Can’t run same sequence of operations on both

even if both are correct, nondeterminism of
concurrency may have the two run produce
different results

Instead:

Try all interleavings of 1 operation

Try all interleavings in a sequence of 2 ops

Try all interleavings in a sequence of 3 ops

…

How do we know if a
sequence is correct?
We run the test program against both the
specification and the implementation

this produces two DFAs, which capture all
possible behaviors of the program

We then verify whether the DFA produced
running against the specification is the same
as the one produced running against the
implementation

Queue test program

NOPS threads,
nondeterministically

choosing* to execute
put or get

* always at least one
put and one get

Life of an

Atomic Operation

Time

process invokes
operation

process
continues

The effect should be that
of the operation

happening instantaneously
sometime in this interval

Life of an

Atomic Operation

Time

operation
happens

atomically

Life of an

Atomic Operation

Time

operation
happens

atomically

Life of an

Atomic Operation

Time

operation
happens

atomically

Correct Behaviors

Time

put (3)

get () ← 3

Suppose the queue is initially empty

Correct Behaviors

Time

put (3)

get () ← None

Suppose the queue is initially empty

Correct Behaviors

Time

put (3)

get () ←

Suppose the queue is initially empty

None

Correct Behaviors

Time

put (3)

get () ←

Suppose the queue is initially empty

3

Queue test program

Testing: comparing
behaviors

The first command outputs the behavior of
the running test program against the
specification in file queue4.hfa

The second command runs the test program
against the implementation and checks if its
behavior matches that stored in queue4.hfa

Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

Separate locks for head and tail

put and get can proceed concurrently

Trick: a dummy node at the head of the queue

last node to be dequeued (except at the beginning)

head and tail never None

Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

Faster!
No contention for

concurrent enqueue and
dequeue ops more

concurrency
⇒

BUT: Data race on

when queue is empty
dummy → next

Global vs Local Locks

The two-lock queue is an example of a data
structure with fine-grain locking

A global lock is easy, but limits concurrency

Fine-grain (local) locks can improve concurrency,
but tend to be tricky to get right

Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

empty list: (-1,
None)

(1,
None) None

Helper routine to find and lock
two consecutive nodes before

and after such that:
before value < v ≤ after value→ →

Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

empty list: (-1,
None)

(1,
None) None

Hand-over-hand
locking

Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

Multiple threads can
access the list
simultaneously, but
they can’t overtake
one another!

