; . Flags and
Petersons Algorithm: Turns!

sequential flags, tumn 4— Prevents out-of ~order execition|
flags = | False, False | '
turn = choose({0, 1}) |

def thread(self):
while choose({ False, True }):

FEnter critical section

flags|self] = True * Id like to enter... |

turn = 1 — self * b yout go £irst! |

await (not flags(l — self]) or (turn == self) |
<3 W at wunti/ alorne or it s ry Cetrn

Critical section is here

cs: assert countLabel(cs) == 1

k
|
|

Leave critical section

flags|[self] = False * Leave #states = 104 diameter = 5
#components: 37

no 1ssues found |
h

spawn thread(0)
spawn thread(1)

What about a proof?

@ To understand why it works...

@ We need to show that, for any execution, all
states reached satisfy mutual exclusion

0O i.e., that mutual exclusion is an invariant
@ See the Harmony book for a proof!

o or come talk to me!

Petersons Reconsidered

® Mutual Exclusion can be implemented with
atomic LOAD and STORE instructions

o multiple STOREs and LOADs

@ Petersons can be generalized to more than 2
processes (as long as the number of
processes is known) but it is a mess...

0 ...and even more STOREs and LOADs

Too inefficient in practice!

Petersons even more
Reconsidered!

@ It assumes LOAD and STORE insfructions are
atomic, but that is not guaranteed on a real
processor

O Suppose X is a 64-bit integer, and you have a
32-bit CPU

0 Then x = 0 requires 2 STORES (and reading x
two LOADs

» because it occupies 2 words!

DO Same holds if x is a 32-bit integer, but it is
not aligned on a word boundary

Concurrent Writing

@ Say x is a 32 bit word @ 0x12340002

@ Consider two threads, Tl and T2
O T1: x = OXFFFFFFFF (i.,e., x=—1)
nT2:x=0

@ After Tl and T2 are done, x may be any of

0 0, OxFFFFFFFF, OxFFFFOOOO, or OXOOOOFFFF

@ The outcome of concurrent write operations to
a variable is undefined

Concurrent Reading

@ Say x is a 32 bit word @ 0x12340002, initially O

@ Consider two threads, Tl and T2
O T1: x = OXFFFFFFFF (i.,e., x=—1)
R = (i.e., T2 reads Xx)
@ After Tl and T2 are done, y may be any of

0 0, OxFFFFFFFF, OxFFFFOOOO, or OXOOOOFFFF

® The outcome of concurrent read and write
operations to a variable is undefined

Data Race

® When two threads access the same
variable...

@ ..and at least one is a STORE...

@ ..then the semantics of the outcome is
undefined

Harmony's “sequential”
statement

@ sequential turn, flags

® Ensures that LOADs and STOREs are atomic

O concurrent operations appear to be executed
sequentially

o this is called sequential consistency

@ Say X’s current value is 3; T1 STOREs 4 into
X; T2 LOADS x
o with atomic LOAD/STORE, T2 reads 3 or 4

o with modern CPUs/compilers, what T2 reads is

undefined
IS

Sequential Consistency

@ Java has a similar notion
o volatile int x (not the same as in C/C++)

@ Loading/Storing sequentially consistent
variables is more expensive than loading/
storing ordinary variables

o it restricts CPU or compiler opfimizations

So, what do we do?

Interlock Instructions

@ Machine instructions that do multiple shared
memory accesses atomically

® TestAndSet s
0 returns the old value of s (LOAD roO,s)
o sets s to True (STORE s, 1)

@ Entire operation is atomic

o other machine instructions cannot interleave

Harmony Intferlude:

Pointers
@ If x is a shared variable, ?x is the address
of x
@ If p is a shared variable, and p = = 7x,

then we say that p is a pointer to x

@ Finally, !p refers to the value of x

Test-and-Set in Harmony

@ For example:
def test_and set(s):

atomically: lockl = False

result = s
ls = True

lock2 = True

rl = test_and_set(?lockl)
r2 = test_and_set(?lock?2)

assert lockl and lock?2

assert (not rl) and r2

Recall: bad lock
implementation

lockTaken = False

def thread(self):
while choose({ False, True }):

Enter critical section

await not lkaaken‘- 7est..
7est and se? lockTaken = True = . and set

not

Critical section
cs: assert countLabel(cs) == 1

aloricl!

Leave critical section
lockTaken = False

spawn thread(0)
spawn thread(1)

A good implementation
(“Spinlock™)

Same idea
as before,
but now
with an
atomic
test&set!

Lock is repeatedly
“tried”, checking on a
condition in a tight
loop (“spinning”)

Locks

@ Think of locks as “baton passing”

o at most one thread can “hold” False

Specifying a Lock

An object, and
def Lock(): the behavior of
result = False the methods that

are invoked on it
def acquire(lk):
atomically when not !/k: O uses atomically

k = True to specify the

behavior of
these methods
when executed
In isolation

def release(lk):
assert !k
atomically !lk = False

Locks and
Critical Sections

Two important invariants

@ T@cs = T holds the lock

@ At most one thread can hold the lock

Implementing” a lock

*Just one way of doing so
def test and set(s): D
atomically: Speciticalion of ¢he

result = s CPU S test—and._.set
's = True

Ffunctionality
*— ——

|
|
|

def Lock():
result = False

def acquire(lk):

while test _and set(lk):
pass

atomically !lk = False

def release(lk): } Must wuse an alornc

S70 '(E 1nstrection

T — T

|

|
|
|

Specff? calion Imp/ erentadion

T — ————

def Lock():
result = False

def acquire(lk):
atomically when not !/k:
'lk = True

def release(lk):
assert !k

atomically !lk = False

What an abstraction
does

y ralLsSEe

| %oa) ZAre 6255 Zraction
does 1t

Using a lock for a
critical section

import synch
const NTHREADS = 2
lock = synch.Lock()

def thread():
while choose({ False, True }):
synch.acquire(?lock)
cs: assert countLabel(cs) ==
synch.release(?lock)

for i in {1..NTHREADS}:
spawn thread()

T —

Spinlocks and
Time Sharing

@ Spinlocks work well when threads on different
cores need to synchronize

@ But what if two threads are on the same core?

o when there is no preemption?

» all threads may get stuck while one is trying to
obtain the spinlock

o when there is preemption?

» still delays and a waste of CPU cycles while a
thread is trying to obtain a spinlock

Beyond Spinlocks

@ We would like to be able to suspend a
thread that is trying to acquire a lock that
Is being held

o until the lock is ready

@ A context switch!

Context switching
In Harmony

@ Harmony allows contexts to be saved and
restored (i.e., context switch)

r = stop p

» Stops the current thread and stores context
in !p (p must be a pointer).

ngo(lp)r

» adds a thread with the given context (i.e.,
the one pointed by p) to the bag of threads.
Threads resumes from stop expression,

returning r

Lock specification using
stop and go

import list

def Lock(): . ac?a/reo/: boolean

result = { .acquired: False, .suspended: [] } . SuUSpended: gutelte of” contex?s

def acquire(ik):
atomically:

if k- acquired: add \SZ‘oppec/ context at the end
stop 7lk—suspended(len lk—suspended| _ o associated with lock
assert k- acquired 5

else:
lk-»acquired = True

def release(ik):
atomically:

assert k- acquired

if lk— suspended == ||
lk—+acquired = False falhs. .. fany

else: restart thread at head of” gutette |
go (list.head(lk—suspended)) () |

|

lk— suspended = list.tail(lk— suspended) and remove it £rom dilecle
T — T ————————

Lock specification using
stop and go

import list
def Lock(): Sipular o Lincex
result = { .acquired: False, .suspended: |] } . "
Fudex
def acquire(ik):

atomically: a)/Z(/7 no conlention

if k- acquired:

stop ?lk— suspended[len lk— suspended| (/70?8{,%//}/ Zhe cormrion
assert k- acquired > >

else: case) acocirel) and

lk-»acquired = True “ “ ? “

def release(lk): re/3453(> are Cihe@ﬂ

atomically: With contention y A

assert k- acquired
if lk— suspended == || . :

lk— acquired = False context Seontlch 1S
else:

go (list.head(lk—»suspended)) ()

lk— suspended = list.tail(lk— suspended)

re?w'rea/

Choosing Modules in
Harmony

@ "synch” is the (default) module that has the
specification of a lock

@ “synchS” is the module that has the stop/go
version of the lock

@ You can select which one you want”
0 harmony -m synch=synchS x.hny
@ “synch” tends to be faster than “"synchS”

o smaller state graph

Atomic Section #
Critical Section

Atomic Sectlon Critical Section

MuL’cipLe threads can execute
cowcuwew’cLH,J’ust not within a
critical section

OV\,LH one thread can
gxecute

Uubiguitous: locks avatlable tn
many marnstream
programming languages

RAYeE Programiming
language paradigm

Good for specifying Good for implementing

tnterlock Lnstruction concurrent data structuwres

Using Locks

® Data structures maintain some invariant

0 Consider a linked list

» There is a head, a tail, and a list of nodes such as
the head points to the first node, tail points to the
last one, and each node points to the next one,
except for the fail, which points to None. However, if
the list is empty, head and tail are both None

@ You can assume the invariant holds right
after acquiring the lock

@ You must iInvariant holds again
right before releasing the lock

Building a
Concurrent Queue

® g = queue.new(): allocates a new queue
@ queue.put(g, v): adds v to the tail of queue ¢
@ v = queue.get(g): returns

B None if g is empty, or

D v if v was at the head of the queue

Specifying a
Concurrent Queue

import list import list

def Queue(): def Queue():
result = || result =]

def put(g, v): : def put(g, v):
lg = list.append(!q, v) atomically !¢ = list.append(lq, v)

def get(q): . def get(q):
if g == |[]: x atomically:

result = None if !1qg == []:
else: result = None
result = 1ist.head(!q) else:
lg = list.tail(!q) result = 1list.head(!q)
: lg = list.tail(!q)

l Se?aenf/a/ ’ i Concerrent l

Example of
using a Queue

import queue

def sender(q, v): engttette V onto (
queue.put(g, v) —_—

def receiver(q):

let v = queue.get(q):
assert v in { None, 1,2} degueue and check

T —

demoq = queue.Queue() credte a guette

spawn sender(?demog, 1) v
spawn sender(’demoyg, 2)
spawn receiver(’demoq)
spawn receiver(’demoq)

(Queue implementation, vl

from synch import Lock, acquire. release
from alloc import malloc, free dyramic. memory allocation

def Queue(): (
result = { .head: None, .tail: None, .lock: Lock() } create empty gutecte

def put(g, v): [

let node = malloc({ .value: v, .next: None }): a//ocale node l

acquire(? g—lock) "

if g—head == None: 5raé Iz J
g—head = g—tail = node

else: The Hard
g—tail—next = node S

g-+tail = node —
release(? g—+lock) release lock l

—

(Queue implementation, vl

def get(q):
acquire(?g-rlock) g /Oiu

T—

let node = g-—rhead: |
if node == None: emply ouese
result = None — J
else: |
result = node—value
g—head = node—next
if g—head == None:
g—tail = None — —

free(node) Free dynarically allocated meriory

L PSS A . S—
release(?7g—lock) release [ock '

7 he Hard
SEufF

How important are
concurrent queues?

@ All important!

O any resource that needs scheduling
» CPU ready queue
» disk, network, prinfer waiting queue

» lock waiting queue

O Intfer-process communication

> Posix pipes: cat file | sort kb

IS
O actor-based concurrency critical!

0

Testing a
Concurrent Queue?

import queue

def sender(q, v):
queue.put(q, v)

def receiver(q):
let v = queue.get(q):
assert v in { None, 1, 2 }

10 demoq = queue.Queue()

i spawn sender(?demog, 1)
12 spawn sender(’demoyg, 2)
1 spawn receiver(?demogq)
14 spawn receiver(?demogq)

T —

Systematic Testing

@ Sequential case:
o Try all sequences consisting of 1 operation
> put or get
o Try all sequences consisting of 2 operations
> put+puf, put+get, get+put, get+get
o Try all sequences consisting of 3 operations

D (XX J

How do we Know if a
sequence IS correct?

® We run the fest program against both the
specification and the implementation

@ We then perform the same sequence of
operations using the code in both sequential
specification and the implementation and
check if these sequences produce the same
behaviors (e.g., they return the same values)

Systematic Testing

® Concurrent case:

o Cant run same sequence of operations on both

» even if both are correct, nondeterminism of
concurrency may have the two run produce
different results

o Instead:

» Try all interleavings of 1 operation
» Try all interleavings in a sequence of 2 ops
» Try all interleavings in a sequence of 3 ops

How do we know if a
sequence IS correct?

® We run the fest program against both the
specification and the implementation

o this produces two DFAs, which capture all
possible behaviors of the program

@ We then verify whether the DFA produced
running against the specification is the same
as the one produced running against the
implementation

Queue test program

import queue

const NOPS = 4
g = queue.Queue()

def put_test(self):

print("call put", self) H Q/AJCZ}/S @ least one
queue.put(?q, self) |

print("done put", self) pé(Z‘ and one 3ef

def get_test(self):
print("call get", self)
let v = queue.get(?¢q):

print("done get", self, v) NOPS ZAreads ;
d . . .
nputs = choose {1..NOPS-1} nondeterrimsticall Y

for i in {1..nputs}: 6/7005/‘/?3* 2o execctle
spawn put_test(i)
for i in {1..NOPS-nputs}: paz‘ or 385

spawn get_test(1)

Life of an
Atomic Operation

process invokes process
operation continues

The effect should be that

of the operation
happening instantaneously
sometime in this interval

Time

Life of an
Atomic Operation

operation
happens
atomically

Time

Life of an
Atomic Operation

operation
happens
atomically

Time

Life of an
Atomic Operation

operation
happens
atomically

Time

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () < 3

Time

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () < None

Time

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () < None

Correct Behaviors

Suppose the queue is initially empty

put (3)

get () <-_- 3

Time

Queue test program

["done get™, 1, .\'mE‘L_OM- 1]
_—/

["call put", 1] [“done get”, 1. 1] ["done put™, 1 |

) i — ["done get”, I, None
[“call get", 1] ["done get", 1,1

[“done put", 1] "done get”, 1, None

I
ﬂ [“call get™, 1] wul 1,1)

$ harmony -c NOPS=2 -o spec.png code/qtestpar.hny |
T ——————— _,

Testing: comparing
behaviors

$ harmony -o queue4.hfa code/qtestpar.hny

$ harmony -B queue4.hfa -m queue=queueconc code/qtestpar.hny

@ The first command outputs the behavior of
the running test program against the
specification in file queue4.hfa

® The second command runs the fest program
against the implementation and checks if its
behavior matches that stored in queue4.hfa

Queue implementation, v2:2 locks

dummy

F e
.head +———p

tail <

hdlock

tllock
N

@ Separate locks for head and fail

o put and get can proceed concurrently

@ Trick: a dummy node at the head of the queue
o last node to be dequeued (except at the beginning)

0 head and ftail never None

Queue implementation, v2:2 locks

dummy

: _.head
.tail

.hdlock
.tlock

from synch import Lock, acquire, release, atomic.load, atomic.store

from alloc import malloc, free

def Queue():
let dummy = malloc({ .value: (), .next: None }):
result = { .head: dummy, .tail: dummy, .hdlock: Lock(), .tllock: Lock() }

def put(g, v):
let node = malloc({ .value: v, .next: None }):
acquire(?g—tllock)
" atomic_store(?g—tail—next, node)
12 g—tail = node

13 release(?q—tllock)
e

Queue implementation, v2:2 locks

dummy

: _.head
tail ~.

.hdlock
.tllock

def get(q): Faster!

acquire(?q—hdlock) No contertion For
let dummy = ¢—head

let node = atomic load(?dummy-»next):
if node == None: a/e?aeae opsS = more
result = None
release(”q—hdlock)
else: D
result = node—value BUT: Data race on
g-+head = node
release(”qg—hdlock)

concerrent engitelle and

i

cOncarrency
T ——

a/ammy — nex?

|
|

£xes(swnmg) when ouette is empty

Global vs Local Locks

@ The two-lock queue is an example of a data
structure with fine-grain locking

@ A global lock is easy, but limits concurrency

@ Fine-grain (local) locks can improve concurrency,
but tend to be fricky to get right

Sorted lists with lock per node

from synch import Lock, acquire, release
from alloc import malloc, free

def node(v, n): # allocate and initialize a new list node
result = malloc({ .lock: Lock(), .value: v, .next: n }) |

de‘;af-i;;‘g:' ;‘)E.,g Yelper rowtine to £ind and /ock |

acquire(?before~+lock) teoo consecitive nodes before |
var after = before—next |
acquire(?after-+lock) and afler swuch At

Wh;:ai:f;:(—”t:r(}g:: jh()(c)i;)t)' beFfore—value < v < after—value
before = after — '
after = before—rnext
acquire(”after—lock)

result = (before, after)

def SetObject():
result = node((-1, None), node((1, None), None)) l eM/DZ‘y /15t

Sorted lists with lock per node

from synch import Lock, acquire, release
from alloc import malloc, free

def node(v, n): # allocate and initialize a new list node
result = malloc({ .lock: Lock(), .value: v, .next: n })

def find(lst, v):
var before = Ist
acquire(?before—lock)
var after = before—next
acquire(?after-+lock)
while after—value < (0, v): %Q/?O/ —ove, "'h&ha/
release(’before—lock) .
before = after /Oc,é/ nﬁ
after = before—»next
acquire(?after—lock)
result = (before, after)

T — ——

|]
- def SetObject():
result = node((-1, None), node((1, None), None)) ‘ eM/DZ‘y /15t

Sorted lists with lock per node

def insert(ist, v):
let before, after = find(lst, v):
if after—value = (0, v):
before—next = node((0, v), after)
release(”after—lock)
release(”before— lock)

Multiple threads can
def remove(lst, v): i
let before, after = find(lst, v): accesSs Z‘he //‘SZ |

if after—value == (0, v):
before—next = after—next . |
release(?after-+lock) Slma/z(aneoa\s/}/) AL(Z(j
free(after)) |

else: i/ley Can Z over fdzé e
release(”after— lock)

release(?before—lock) one Q/?thef‘ _/

def contains(ist, v): S
let before, after = find(lst, v):
result = after—value == (0, v)
release(”after—lock)

release(?before— lock)
T

