
Peterson’s Algorithm:
Flags and


Turns!
Prevents out-of-order execution

 I’d like to enter…
 …but you go first!

 Wait until alone or it’s my turn

 Leave #states = 104 diameter = 5 
#components: 37                 
no issues found



What about a proof?

To understand why it works…

We need to show that, for any execution, all 
states reached satisfy mutual exclusion


i.e., that mutual exclusion is an invariant

See the Harmony book for a proof!


or come talk to me!



Peterson’s Reconsidered

Mutual Exclusion can be implemented with 
atomic LOAD and STORE instructions


multiple STOREs and LOADs

Peterson’s can be generalized to more than 2 
processes (as long as the number of 
processes is known) but it is a mess…


…and even more STOREs and LOADs

Too inefficient in practice!



Peterson’s even more 
Reconsidered!

It assumes LOAD and STORE instructions are 
atomic, but that is not guaranteed on a real 
processor


Suppose  is a 64-bit integer, and you have a 
32-bit CPU

Then  requires 2 STORES (and reading  
two LOADs


because it occupies 2 words!

Same holds if  is a 32-bit integer, but it is 
not aligned on a word boundary

x

x = 0 x

x



Concurrent Writing
Say  is a 32 bit word @ 0x12340002

Consider two threads, T1 and T2


T1: 0xFFFFFFFF            (i.e., )

T2: 


After T1 and T2 are done,  may be any of

0,  0xFFFFFFFF,  0xFFFF0000, or 0X0000FFFF


The outcome of concurrent write operations to 
a variable is undefined

x

x = x = − 1
x = 0

x



Concurrent Reading
Say  is a 32 bit word @ 0x12340002, initially 0

Consider two threads, T1 and T2


T1: 0xFFFFFFFF            (i.e., )

T2:                        (i.e., T2 reads )


After T1 and T2 are done,  may be any of

0,  0xFFFFFFFF,  0xFFFF0000, or 0X0000FFFF


The outcome of concurrent read and write 
operations to a variable is undefined

x

x = x = − 1
y = x x

y



Data Race

When two threads access the same 
variable…

…and at least one is a STORE…

…then the semantics of the outcome is 
undefined



Harmony’s “sequential” 
statement

sequential 

Ensures that LOADs and STOREs are atomic


concurrent operations appear to be executed 
sequentially

this is called sequential consistency


Say s current value is 3; T1 STOREs 4 into 
; T2 LOADs 


with atomic LOAD/STORE, T2 reads 3 or 4

with modern CPUs/compilers, what T2 reads is 
undefined

x′ 

x x
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turn, flags



Sequential Consistency

Java has a similar notion

volatile int x (not the same  as in C/C++)


Loading/Storing sequentially consistent 
variables is more expensive than loading/
storing ordinary variables


it restricts CPU or compiler optimizations



So, what do we do?



Interlock Instructions

Machine instructions that do multiple shared 
memory accesses atomically

TestAndSet s


returns the old value of s  (LOAD r0,s)

sets s to True                (STORE s, 1)


Entire operation is atomic

other machine instructions cannot interleave



Harmony Interlude: 
Pointers

If  is a shared variable,  is the address 
of 


If  is a shared variable, and , 
then we say that  is a pointer to 


Finally,  refers to the value of 

x ?x
x

p p = = ?x
p x

!p x



Test-and-Set in Harmony

For example:

lock1 = False
lock2 = True
r1 = test_and_set(?lock1)
r2 = test_and_set(?lock2)

assert lock1 and lock2
assert (not r1) and r2



Recall: bad lock 
implementation

 Test..
 ..and setTest and set 

not  
atomic!!



A good implementation

(“Spinlock”)

Same idea 
as before, 
but now 
with an 
atomic 

test&set!
Lock is repeatedly 

“tried”, checking on a 
condition in a tight 
loop (“spinning”)



Locks

Think of locks as “baton passing”

at most one thread can “hold” False



Specifying a Lock

uses atomically 
to specify the 
behavior of 
these methods 
when executed 
in isolation

An object, and 
the behavior of 

the methods that 
are invoked on it



Locks and 

Critical Sections

Two important invariants

cs   holds the lock

At most one thread can hold the lock

T@ ⇒ T



Implementing* a lock
*Just one way of doing so

Specification of the 
CPU’s test-and_set 

functionality
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}

Must use an atomic 
STORE instruction
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}



Specification Implementation

What an abstraction 
does How the abstraction 

does it



Using a lock for a 
critical section



Spinlocks and 

Time Sharing

Spinlocks work well when threads on different 
cores need to synchronize

But what if two threads are on the same core?


when there is no preemption?

all threads may get stuck while one is trying to 
obtain the spinlock


when there is preemption?

still delays and a waste of CPU cycles while a 
thread is trying to obtain a spinlock



Beyond Spinlocks

We would like to be able to suspend a 
thread that is trying to acquire a lock that 
is being held


until the lock is ready

A context switch!



Context switching 

in Harmony

Harmony allows contexts to be saved and 
restored (i.e., context switch)


r = stop p

stops the current thread and stores context 
in !p (p must be a pointer).  


go (!p) r

adds a thread with the given context (i.e., 
the one pointed by p) to the bag of threads. 
Threads resumes from stop expression, 
returning r



Lock specification using 
stop and go

. acquired: boolean 

. suspended: queue of contexts

add stopped context at the end 
of queue associated with lock

restart thread at head of queue 
and remove it from queue



Similar to Linux 
 “futex”:  

with no contention 
(hopefully the common 

case) acquire() and 
release() are cheap. 
With contention, a 
context switch is 

required

Lock specification using 
stop and go



Choosing Modules in 
Harmony

“synch” is the (default) module that has the 
specification of a lock

“synchS” is the module that has the stop/go 
version of the lock

You can select which one you want”


harmony -m synch=synchS x.hny

“synch” tends to be faster than “synchS”


smaller state graph



Atomic Section ≠ 

Critical Section

Atomic Section Critical Section

Only one thread can 
execute

Multiple  threads can execute 
concurrently, just not within a 

critical section

Rare programming 
language paradigm

Ubiquitous: locks available in 
many mainstream 

programming languages

Good for specifying 
interlock instruction

Good for implementing 
concurrent data structures



Using Locks
Data structures maintain some invariant


Consider a linked list

There is a head, a tail, and a list of nodes such as 
the head points to the first node, tail points to the 
last one, and each node points to the next one, 
except for the tail, which points to None. However, if 
the list is empty, head and tail are both None


You can assume the invariant holds right 
after acquiring the lock

You must make sure invariant holds again 
right before releasing the lock



Building a 

Concurrent Queue

: allocates a new queue


: adds  to the tail of queue 


: returns 


None if  is empty,  or 


 if  was at the head of the queue

q = queue.new()
queue.put(q, v) v q

v = queue.get(q)
q

v v



Specifying a 

Concurrent Queue

Sequential Concurrent



Example of 

using a Queue

enqueue  onto  v q

dequeue and check

create a queue



Queue implementation, v1
.head
.tail
.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation 

create empty queue 

allocate node 
grab lock 

release lock

The Hard 
Stuff



Queue implementation, v1
.head
.tail
.lock

.value

.next
.value
.next

.value

.next None

empty queue 

release lock

grab lock 

free dynamically allocated memory

The Hard 
Stuff



How important are 
concurrent queues?

All important!

any resource that needs scheduling


CPU ready queue

disk, network, printer waiting queue

lock waiting queue


inter-process communication

Posix pipes: cat file | sort


actor-based concurrency

…

Performance 
is 


critical!



Testing a 

Concurrent Queue?

Ad hoc

Unsystematic



Systematic Testing

Sequential case:

Try all sequences consisting of 1 operation


put or get

Try all sequences consisting of 2 operations


put+put, put+get, get+put, get+get

Try all sequences consisting of 3 operations

…



How do we know if a 
sequence is correct?
We run the test program against both the 
specification and the implementation

We then perform the same sequence of 
operations using the code in both sequential 
specification and the implementation  and 
check if these sequences  produce the same 
behaviors (e.g., they return the same values)



Systematic Testing
Concurrent case:


Can’t run same sequence of operations on both

even if both are correct, nondeterminism of 
concurrency may have the two run produce 
different results 


Instead:

Try all interleavings of 1 operation

Try all interleavings in a sequence of 2 ops

Try all interleavings in a sequence of 3 ops

…



How do we know if a 
sequence is correct?
We run the test program against both the 
specification and the implementation


this produces two DFAs, which capture all 
possible behaviors of the program 


We then verify whether the DFA produced 
running against the specification is the same 
as the one produced running against the 
implementation



Queue test program

NOPS threads,  
nondeterministically 

choosing* to execute 
put or get

* always at least one 
put and one get



Life of an 

Atomic Operation

Time

process invokes 
operation

process 
continues

The effect should be that 
of the operation 

happening instantaneously 
sometime in this interval



Life of an 

Atomic Operation

Time

operation 
happens 

atomically



Life of an 

Atomic Operation

Time

operation 
happens 

atomically



Life of an 

Atomic Operation

Time

operation 
happens 

atomically



Correct Behaviors

Time

put (3)

get () ← 3

Suppose the queue is initially empty



Correct Behaviors

Time

put (3)

get () ← None

Suppose the queue is initially empty



Correct Behaviors

Time

put (3)

get () ←

Suppose the queue is initially empty

None



Correct Behaviors

Time

put (3)

get () ←

Suppose the queue is initially empty

3



Queue test program



Testing: comparing 
behaviors

The first command outputs the behavior of 
the running test program against the 
specification in file queue4.hfa

The second command runs the test program 
against the implementation and checks if its 
behavior matches that stored in queue4.hfa



Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

Separate locks for head and tail

put and get can proceed concurrently


Trick: a dummy node at the head of the queue

last node to be dequeued (except at the beginning) 

head and tail never None



Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy



Queue implementation, v2:2 locks
.head
.tail

.hdlock

.value

.next
.value
.next

.value

.next None

.tllock

dummy

Faster! 
No contention for 

concurrent enqueue and 
dequeue ops  more 

concurrency 
⇒

BUT: Data race on 
 

when queue is empty
dummy → next



Global vs Local Locks

The two-lock queue is an example of a data 
structure with fine-grain locking

A global lock is easy, but limits concurrency

Fine-grain (local) locks can improve concurrency, 
but tend to be tricky to get right



Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

empty list: (-1, 
None)

(1, 
None) None

Helper routine to find and lock 
two consecutive nodes before 

and after such that: 
before value < v ≤ after value→ →



Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

empty list: (-1, 
None)

(1, 
None) None

Hand-over-hand  
locking



Sorted lists with lock per node
.next

.value

.next None
-∞ .value

.next
∞

.next

Multiple threads can 
access the list 
simultaneously, but 
they can’t overtake 
one another!


