Context switch overhead

@ Cost of saving registers (including, if
appropriate, page table register)

@ Cost of scheduler determining which process
to run next

@ Cost of restoring registers (including, if
appropriate, page table register)

@ Cost of flushing caches
o L1, L2, L3, TLB

Basic Scheduling
Algorithms

@ FIFO (First In First Out) a.k.a. FCFS
® SJF (Shortest Job First)
@ EDF (Earliest Deadline First)
0 preemptive
@ Round Robin
O preemptive
@ Shortest Remaining Time First (SRTF)

O preemptive

FIFO

@ Jobs Ji, Js,J; with compute time 12, 3, 3. Same
arrival time (so can be scheduled in any order)

o Scenario 1: Schedule order Ji, Js, J3

SRR : Average
e -. ' (12+15+18)/3 = 15

Time O 12 15 18

FIFO

@ Jobs Ji, Js,J; with compute time 12, 3, 3. Same
arrival time (so can be scheduled in any order)

0 Scenario 1: Schedule order Ji, Js, J3

Time O 12 15

O Scenario 2: Schedule order Jo, J3, Ji

18

Time O 3)

18

Average
Turnaround Time:
(12+15+18)/3 = 15

Average
Turnaround Time:
(3+6+18)/3 =9

Average turnaround time very sensitive to schedule order!

FIFO Roundup

Simple
The Good Low overhead
No starvation

Average turnaround time
- very sensn’rlve ’ro schedule

Not responsive to
interactive tasks

How to minimize average
turnaround time?

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time
(or, better, shortest length of next CPU burst!)

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

0 1 2.5 4.5 7 10 14

@ Average Turnaround time (att): 39/6 = 6.5

@ Would a different schedule produce a lower
turnaround time?

consider [N

Ci where ¢; <¢;

B

att = (¢; + (¢ +¢j))/2

SJF: Shortest Job First

@ Schedule jobs in order of estimated completion time

0 1 2.5 4

oY S
.5 7 10 14

@ Average Turnaround time (att): 39/6 = 6.5

@ Would a different schedule produce a lower
turnaround time?

Consider Ci _ where ¢; <¢;

[T = B

att = (¢; + (¢ci +¢5))/2 att = (¢; + (¢; +¢5))/2

SJF Roundup

The Good

Optimal average
turnaround time

- Pessimal variance in turnaround
time for a given task

Need to estimate
execution time

Can starve long jobs

SJF Roundup

Optimal average
The Good turnaround time

Pessimal variance in turnaround
time for a given task

Need to estimate
execution time

Can starve long jobs

Shortest Process Next
(SJF for interactive jobs)

@ Enqueue in order of estimated completion time

o Exponential moving average (EMA): Use recent
history as indicator of near future

@ Let ¢, = duration of n!* CPU burst
r. — estimated duration of n'" CPU burst

7.1 = eStimated duration of next CPU burst

Tni1= aTp,+(1 — a)i,

0<a<1 determines weight placed on past behavior

Earliest Deadline First (EDF)

® Schedule in order of earliest deadline

@ If a schedule exists that meets all
deadlines, then EDF will generate that
schedule!

o does not even need to know the execution times of the jobs

Informal Proof

O Let S be a schedule of a set of jobs that meets all deadlines

D Let J1 and J2 be two neighboring jobs in S so that ji.deadline > j2.deadline

D Let S’ be S with j; and j5 switched
> S’ also meets all deadlines!

b ‘71 A ‘72 o

D Repeat until sorted (i.e., bubblesort)

> Resulting schedule is EDF j j
2 1

Earliest Deadline First (EDF)

® Schedule in order of earliest deadline

@ If a schedule exists that meets all
deadlines, then EDF will generate that
schedule!

o does not even need to know the execution times of the jobs

Informal Proof

O Let S be a schedule of a set of jobs that meets all deadlines
D Let J1 and J2 be two neighboring jobs in S so that ji.deadline > j2.deadline
D Let S’ be S with j; and j5 switched

> S’ also meets all deadlines! S

D Repeat until sorted (i.e., bubblesort)

> Resulting schedule is EDF ; :
2 1

When EDF fails

@ Two jobs:
O ji: deadline at t=12; 1 unit of computation, 10 of I/0

O jo: deadline at ©=10; 5 units of computation

t=0 t=5 t=6 =) =12

EDF:

When EDF fails

@ Two jobs:
O ji: deadline at t=12; 1 unit of computation, 10 of I/0

O jo: deadline at ©=10; 5 units of computation

t=0t=1 t=06 =) t=12

e

TRy alRE

@ Need to think of jobs at a finer granularity:

DO Real deadline for the computing portion of j; is 2!

EDF Roundup

Meets deadlines if possible (but...)

Uiz Eeee Free of starvation

Does not optimize
other metrics

Cannot decide when
to run jobs without
deadlines

Round Robin

@ Each process is allowed to run for a quantum

® Context is switched (at the latest) at the end of
the quantum — preemption!

@ Next job to run is the one that hasnt run for the
longest amount of time

® What is a good quantum size?
o Too long, and it morphs info FIFO
o Too short, and much time lost context switching

o Typical quantum: about 100X cost of context switch
(~100ms vs. << 1ms)

Round Robin vs FIFO

Jobs of about equal length (5 TU) start at about the same time

211
W W mE R B
N i i Er i
o 23]
. . . . | 24

l 2|

Average Turnaround time
(21 + (22-1) + (23-2) + (24-3) + (25-4)) / 5
=21

Average Turnaround time 1
(5 + (10-1) + (15-2) + 10 y
(20-3) + (25-4)) / 5 = 13 15

o —
L Ve
| I ,:' .l
[
$
|
[

|

At least it is fair...?

@ Mix of one I/0-bound and two CPU-bound jobs
0 I/O-bound: compute; go to disk; repeat

compute go to disk compute go to disk
o A
I/OBound [l Wait 190 MS -cevvvnneennnnn.. e
t1 '
= Issues
i iﬁ letes 1/0 Mg
Request P Request completes

CPU Bound 100ms quantum 100ms quantum

CPU Bound 100ms quantum

Time

Round Robin Roundup

No starvation

Can reduce response fime

Overhead of context switching
" Mix of I/0 and CPU bound

Particularly bad average turnaround
for simultaneous, equal length jobs

SJF

@ Jy arrives at time O; Js,J3 arrive at time 10

100+(110-10)+(120 -10)/3
= 103.33

J_ : J Average Turnaround Time:
10 el | -

Time O JZ,TJ3 100 110 120
arrive

SJF + Preemption

@ J; arrives at time O; Js, J3 arrive at time 10

' SR sk | | Average Turnaround Time:
10 ; J 1 f] J3 100+(110-10)+(120 -10)/3
T = 103.33
Time O J,!.J; 100 10 120
arrive
| ' ok Shortest Remaining
@ With a preemptive scheduler — SRTF =fories femd

O Often same job is selected,

At end of each quantum, scheduler selects job IREIER context switch...

with the least remaining fime to run next BRI e <hort jobs see
improved response time

J2, J3

arrive

Average Turnaround Time:
J 1 J 1 (120-0)+(20-10)+(30-10)/3

= 50
TimeO 10 20 30 120

The Bad

SRTF Roundup

The Good

Good response time and
turnaround time of 1/0
bound processes

- Bad turnaround time and response

time for CPU bound processes

Priority Scheduling

@ Assign a number (priority) to each job and
schedule jobs in priority order
@ Can implement any scheduling policy

B Reduces fo SRTF when using as priority 7,
(the estimate of the execution time)
@ To avoid starvation
o change jobs priority with time (aging)
o select jobs randomly, weighted by priority

"Completely Fair Scheduler” (CFS)

Spent Execution Time

@ SET: time process has been executing

@ Scheduler selects process with lowest SET

@ Given a quantum A and N processes on ready queue
o process runs for A/N time (there is a minimum value)
@ If it uses it up, reniserted into queue with SET += A/N

o for efficiency, queue implemented as a red/black tree

@ For a process p that is new or sleeps and wakes up

@ SETp = max (SETp, min{SET of ready processes})

@ To account for priority, SET grows slower for higher
priority processes

Multi-level
Feedback Queue (MFQ)

® Scheduler learns characteristics of the jobs it
IS managing

D Uses the past to predict the future

@ Favors jobs that used little CPU...

O ..but can adapt when the job changes its
pattern of CPU usage

The Basic Structure

Q8 ~P (A —P (B ® Queues correspond tfo different
priority levels

Q7
o higher is better
Q6 - =
/ @ Scheduler runs job in queue i if
Q5 P (C no other job in higher queues
Q4 @ Each queue runs RR
Q3 @ Parameter:
Q2 0 how many queues?
Ql ~—§ (D

How are jobs assigned to a queue?

Q8
Q7
Q6
Q5
Q4
Q3
Q2
Ql

Moving down

—~p A B B @ Job starts at the top level

@ If it uses full quantum before
giving up CPU, moves down

— (c @ Otherwise, It stays were it is

@ What about 1/0?

o Job with frequent I/0 will not
finish its quantum and stay at
the same level

® Parameter

0 quantum size for each queue

Moving Up

Q8 ~¥ (A @ A jobs behavior can change

Q7 o Affter a CPU-bound interval,
process may become I1/0 bound

Q6

_ @ Must allow jobs to climb up

Q5 ~¥ (¢ the priority ladder...

QrA o As simple as periodically placing
all jobs in the top queue, until

Q3 they percolate down again

Q2 @ Parameter

Ql ~§ (D) —P (B o time before jobs are moved up

Qs —» @ —» (@

Q7
Q6
Q5
Q4
Q3
Q2
Ql

Sneeeeakyvyy...

@ Say that I have a job that
requires a lot of CPU

o Start at the top queue

o If I finish my quantum, I'll be
demoted...

O ..just give up the CPU before
my quanfum expires!

@ Better accounting

o fix a jobs time budget at each
level, no matter how it is used

o more scheduler overhead

Priority Inversion

@ Some high priority process is

Q8 ~¥ (A ~ (B waiting for some low priority
Q7 process
o e.g., low priority process has a
Q6 lock on some resources
Q5 —P(C @ Solution: Process needing lock
temporarily bestows its high
Q4 priority to lower priority
Q3 process with lock
Q2

Ql ~—$ (D

Multi-core Scheduling:
Sequential Applications

® A web server

Request

o A thread per user connection

o Threads are I/0 bound
(access disk/network)

» favor short jobs!

An MFQ, right?

0 Idle cores take task off MFQ
o Only one core at a time gets access to MFQ

o If thread blocks, back on the MFQ

Single MFQ
Considered Harmful

@ Contention on MFQ lock

@ Limited cache reuse

0 since threads hop from core to core

® Cache coherence overhead
O core needs to fetch current MFQ state
0 on a single core, likely fo be in the cache

0 on a multicore, likely to be in the cache of
another processor

» 2-3 orders of magnitude more expensive to fetch

To Each (Process),
its Own (MFQ)

@ Cores use affinity scheduling
0 each thread is run repeatedly on the same core
» maximizes cache reuse

0 more complex to achieve on a single MFQ

® Idle cores can steal work from other
processors

0 re-balance load at the cost of some loss of cache
efficiency

o only if it is worth the time of rewarming the cache!

Multicore Scheduling:
Parallel Applications

@ Application is decomposed in parallel tasks

0 granularity roughly equal to available cores

> Or poor cache reuse

o Often (e.g., MapReduce) I l I

Local compu’ra’rlon

using bulk synchronous
parallelism (BSP)

» tasks are roughly of
equal length

Barriers %, Communication

» progress limited by I . l I

slowest core Local computation

Time

Scheduling Bulk
Synchronous Applications

Oblivious Schedulin "‘!LG,*? = Gang Schedulin
N Al
Each process time-slices its ready list independently @@,,§’“ Jc& Schedule all tasks from the same
,\\%{‘# . Pprogram fogether
Four applications, ® ® ® ®, each with four threads £ Four applications, ® ® ® ®, each with four threads

Length of BSP step determined by last scheduled thread!
Pink thread may be waiting on other pink threads holding lock

