How to run
multiple processes

The Problem

@ Say (for simplicity) we have a single core CPU
@ A process physically runs on the CPU

@ Yet each process somehow has its own
o Registers
0 Memory
o I/0O Resources

@ Need to multiplex/schedule to create virtual
CPUs for each process

Our friend, the

Process Control Block

@ A per-process data structure held by OS, with

a

O 0O 0O 0O ESEiEE

location in memory (page table)
location of executable on disk

id of user executing this process (uid)
process identifier (pid)

process status (running, waiting, etc.)
scheduling info

intferrupt stack

saved kernel SP (when process is not running)
» points into interrupt stack

» inferrupt stack contains saved registers and kernel call
stack for this process

...and more

Process Life Cycle

(S

Process Life Cycle

(S

Process Life Cycle

Admitted to
the Ready
queue

PCB: being created
Registers: uninitialized

91

Process Life Cycle

Admitted to
the Ready
queue

PCB: on the Ready queue
Registers: pushed by kernel

code onto kernel stack

92

Process Life Cycle

Admitted to
the Ready
queue

Dispatch %

PCB: currently executing
Registers: popped from

kernel stack into CPU

93

Process Life Cycle

Admitted to
the Ready
queue

Dispatch 7

PCB: on Ready queue
Registers: pushed onto kernel

stack (SP saved in PCB)

94

Process Life Cycle

Admitted to
the Ready
queue

PCB: currently executing
Registers: SP restored from

PCB; others restored from stack

95

Process Life Cycle

Admitted to
the Ready
queue

blocking call
e.g., read(), wait()

PCB: on specific waiting queue
(I/0 device, lock, etc.)
Registers: on kernel stack

Waiting

96

Process Life Cycle

Admitted to

the Ready Dispatch
queue
blocking call blocking call
completion e.g., read(), wait()

PCB: on Ready queue
Registers: on kernel stack

97

Process Life Cycle

Admitted to
the Ready

queue
blocking call blocking call
completion e.g., read(), wait()

PCB: currently executing
Registers: restored from
PCB (SP) and kernel stack
info CPU 98

Process Life Cycle

Admitted to
the Ready

queue
done
exit()
blocking call blocking call
completion e.g., read(), wait()

PCB: on Finished queue,
ultimately deleted
Registers: no longer needed

99

Invariants
to keep in mind

@ At most one process/core running at any time

@ When CPU in user mode, current process is RUNNING and
its kernel stack is empty

@ If process is RUNNING

o its PCB not on any queue
o it is not necessarily in USER mode

@ If process is READY or WAITING
o its registers are saved at the top of its kernel/interrupt stack

o its PCB is either
» on the READY queue (if READY)
» on some WAIT queue (if WAITING)

@ If process is a ZOMBIE
o its PCB is on FINISHED queue

Cleaning up Zombies

@ Process cannot clean up itself

o hard to clean up and switch without a stack!

@ Process can be cleaned up

0 by some other process, checking for zombies
before returning to RUNNING state
)

o or by parent which waits for it | @

» but what if parent turns into a zombie first? . o
([N

o or by a dedicated “reaper” process

@ Linux uses a combination
o if alive, parent cleans up child that it is waiting for

o if parent is dead, child process is inherited by the
initial process, which is continually waiting

Process Life Cycle

Admitted to

the Ready Dispatch
queue
done
exit()
blocking call blocking call

completion e.g., read(), wait()

102

How to Yield/Wait?

® Must switch the "CPU state” (the context)
captured in its registers and PSW

@ Must switch from executing the current
process to executing some other READY process

0 Current process: RUNNING — READY
o Next process: READY — RUNNING

1. Save kernel registers of Current on its kernel stack
2. Save kernel SP of Current in its PCB
3. Restore kernel SP of Next from its PCB

4. Restore Kernel registers of Next from its kernel stack

ctx_switch(&old_sp, new_sp)

ctx_switch: //ip already pushed
pushq %rbp
pushq %rbx
pushq %rl5
pushq %rl4

pushq %rl3
pushq %rl2

pushq %rll

pushq %rl0

pushq %r9

pushq 7%r8

movq %rsp, (%rdi)
movq %rsi, %rsp
popq Z%rbp

popq %rbx

popq %rl5

popq %rl4

popq %rl3
popq %rl2

popq %rll
popq %rl0
popq %r9
popq 7%r8
retq

fuastsack /|

next;

| struct pcb *current, *

b void vyield()§ I
assert(current->state == RUNNING); §
current->state = READY;
readyQueue.add(current);
next = scheduler();

next->state = RUNNING; _
ctx_switch(¤t->sp, next->sp) |
current = next;

Anybody there?

@ What if no process is READY?
o scheduler() would return NULL — aargh!

@ No panic on the Titanic:

o OS always runs a low priority process, in an
infinite loop executing the HLT insfruction

> halts CPU until next inferrupt

o Interrupt handler executes yield() if some other
process is put on the Ready queue

Three Flavors of
Context Switching

@ Interrupt: from user fo kernel space
o on system call, exception, or interrupt
0 Stack switch: Px user stack — Px interrupt stack

@ Yield: between two processes, inside kernel
o from one PCB/interrupt stack to another
o Stack switch: Py interrupt stack— Py inferrupt stack

@ Return from interrupt: from kernel to user space
0 with the homonymous instruction
o Stack switch: Px interrupt stack — Px user stack

User
Space

Kernel
Space

Switching between
Processes

Process 1

I scheduler selects ¢
' ready process §

Process 2

return
from
interrupt

Save Process 1 user registers

. Save Process 1 kernel registers

and restore Process 2 Kkernel
registers

. Restore Process 2 user registers

System Calls to
Create a New Process

@ Must, implicitly or explicitly, specify the initial
state of every OS resource belonging to the new
process.

@ Windows
o CreateProcess(...);
@ Unix (Linux)

n fork() + exec(...)

CreateProcess (Simplified)

if (!CreateProcess(

NULL,
argv[l],
NULL,
NULL,
FALSE,
O,
NULL,
NULL,
&esi,
&pi)

)

[Windows]

// No module name (use command line)
// Command line
// Process handle not inheritable
// Thread handle not inheritable
// Set handle inheritance to FALSE
// No creation flags
// Use parent's environment block
// Use parent's starting directory
// Pointer to STARTUPINFO structure
// Ptr to PROCESS_INFORMATION structure

fork (actual form)

process identifier

int pid = fork();

.but needs exec(...)

[Unix]

Kernel Actions to
Create a Process

o fork()
o allocate ProcessID
o initialize PCB
o create and initialize new address space

» identical to the one of the caller

» returns twice, (!), to both the parent and the child process,
setting pid to different values

o inform scheduler new process is READY

@ exec(program, arguments)

o load program into address space

o copy arguments into address spaces memory

o initialize h/w context to start execution at ““start”

