
Opera&ng	Systems

CS4410

Where’s	the	puck	going?

Rachit	Agarwal



Announcements

• Final:	12/11	@	9AM,	Barton	Hall,	100	west	

• Review	session:	12/08,	2PM,	zoom	(post	on	Ed	discussions)	

• Lost	sessions:	thanks	for	using;	makes	me	happy	about	my	experiments	

• Please	fill	out	the	course	evaluations	
• Easy	way	to	get	5%	
• Please	be	constructive	(evaluations	are	for	many	eyes,	not	just	me)

2



Taking	25	steps	back!

3



A	software	layer	designed	with	three	goals:		

• Enable	applications	to	conveniently	access	hardware	
• Manage	all	hardware	resources	

• Implement	common	services	for	applications

What	is	an	operating	system,	and	what	does	it	do?



What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware	
• CPU:	threads	
• Memory:	virtual	memory	

• Storage	devices:	files	
• Network:	sockets	
• Server:	collection	of	resources	needed	by	an	application	

• processes,	VM,	containers



What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware	

• Manages	hardware	resources	

• Resource	allocation	to	individual	applications	
• Resource	sharing	across	concurrently	running	applications	
• Resource	isolation	across	concurrently	running	applications



What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware	

• Manages	hardware	resources	

• Implements	common	services	for	applications	

• Security,	protection	and	authentication	
• Reliability		
• Communication	
• Input/output	operations	
• Program	execution	
• ….



Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other



• A	single,	sequential	execution	context	

• A	virtual	core:	provides	illusion	of	infinite	cores	
• Enables	efficient	multiplexing	of	physical	cores…	

• …across	concurrently	running	applications	

• Challenges	in	designing	virtual	cores	
• Scheduling,	synchronization	

• The	OS	provides	protection/isolation	at	process	granularity	
• Each	thread	has	its	own	state	
• Can	access	other	threads’	state	(within	the	same	process)

Threads



• Many	different	possible	scheduling	mechanisms	

• FIFO,	SJF,	EDF,	RR,	SRTF	
• Some	are	preemptive,	some	are	not	preemptive	

• No	one-size-fits-all	solution	

• Our	focus:	understanding	tradeoffs	(pros	and	cons)	of	each	mechanism	

• And	using	the	insights	to	build	a	near-ideal	CPU	scheduler	
• Very	close	to	the	Linux	CFS	scheduler	

• Some	conceptual	takeaways	that	we	studied	

• Priority	scheduling	can	“emulate”	most	scheduling	mechanisms	

• Priorities	should	be	used	to	define	physical	core	share	
• Rather	than	strictly	preferential	job	scheduling

CPU	scheduling



• Coordination	between	multiple…	

• …threads	within	the	same	protection/isolation	domain	

• …processes	and	threads	operating	on	shared	data	

• A	hard	problem		

• No	“algorithm”	to	design	a	correct-by-design	program	

• Our	focus:		
• Understanding	the	core	challenges	in	synchronization	
• A	suite	of	techniques	that	can	be	used	

• Locks,	semaphores,	condition	variables,	monitors	

• Hardware	support	for	synchronization

Synchronization



• Virtual	address	space:	virtualizing	physical	memory	address	space	

• Enables	efficient	multiplexing	of	memory…	

• …across	concurrently	running	applications	

• We	focused	on	three	aspects	in	memory	management	

• Efficient	sharing	of	physical	resources	
• Paging,	and	page	replacement	

• Space	and	time	efficient	address	translation	

• Space	efficiency:	multi-level	page	tables	

• Time	efficiency:	TLB,	small	#levels	in	multi-level	page	tables	

• Protection	
• Apps	use	virtual	address,	kernel	handles	physical	addresses

Memory	management



• Virtual	memory:	provides	illusion	of	infinite	memory	

• By	swapping/paging	data	to	secondary	storage	
• Each	program	gets	the	illusion	of	having	dedicated,	infinite,	memory	

• Paging	
• Page	faults	
• Page	replacement	mechanisms:		

• Optimal	(Belady’s	algorithm)	

• LRU	
• Approximating	LRU:	The	clock	algorithm	

• Working	set	page	replacement	

• Local	and	global	page	replacement

Memory	management



• The	OS	must	handle	all	IO	devices	

• Storage	devices:	HDD,	SSD	
• Network	devices:	NIC	
• Peripheral	devices:	mouse,	keyboards,	…	

• And	all	buses:	memory	bus,	I/O	bus,	peripheral	bus	

• Mechanisms:	Interrupt-driven	I/O,	DMA	

• Devices:	Mostly	SSD,	brief	discussion	on	HDD

Beyond	threads,	processes	and	memory



• The	OS	must	handle	all	IO	devices	

• Storage	devices:	HDD,	SSD	
• Network	devices:	NIC	
• Peripheral	devices:	mouse,	keyboards,	…	

• And	all	buses:	memory	bus,	I/O	bus,	peripheral	bus	

• OS	support	for	handling	storage	devices	
• File	systems	

• contiguous,	linked	list,	tree-based	multi-level	index	file	storage	

• consistent	updates	
• Block	layer	
• Device	drivers	(minimal	discussion)

Beyond	threads,	processes	and	memory



• The	OS	must	handle	all	IO	devices	

• Storage	devices:	HDD,	SSD	
• Network	devices:	NIC	
• Peripheral	devices:	mouse,	keyboards,	…	

• And	all	buses:	memory	bus,	I/O	bus,	peripheral	bus	

• OS	support	for	handling	network	devices	
• The	entire	“network	stack"	
• End-to-end	story	
• Various	functionalities	that	interact	with	other	layers	

• Sockets	and	ports	
• Packet	steering,	and	tradeoffs	
• Packet	aggregation,	and	tradeoffs

Beyond	threads,	processes	and	memory



Taking	1	step	forward!

17



Skate	where	the	puck’s	going,	
not	where	it’s	been!	

-	Walter	Gretzky



Memory	bus		
(80	GB/s)

PCIe		
(1x16	GB/s)

SATA	
(0.05-0.1	GB/s)Et

he
rn
et
	

(1
.2
5	
G
B/
s)

Size	
(TB)

Random	
Access	
(us)

Seq.	
Access	
(GB/s)

0.1 0.1 80

1 25 1x

10 4000 0.1x

Where	is	the	puck	right	now?



Memory	bus		
(80	GB/s)

PCIe		
(1x16	GB/s)

SATA	
(0.05-0.1	GB/s)Et

he
rn
et
	

(1
.2
5	
G
B/
s)

Where	is	the	puck	going?



2016:	+10%

2016:	+18-20%

Where	is	the	puck	going?	(CPU	performance)



• #Cores:	+18-20%	

• Per	core:	+10%
Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32%

Where	is	the	puck	going?



+29%

Where	is	the	puck	going?	(DRAM	capacity)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

Where	is	the	puck	going?



+15%

Where	is	the	puck	going?	(Memory	bus)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

+15%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

Where	is	the	puck	going?



Ba
nd

w
id
th
	p
er
	la
ne

	(G
bp

s)

0

4

8

12

16

Year

2002 2004 2006 2008 2010 2012 2014 2016 2018

+15%

Where	is	the	puck	going?	(PCIe)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

+15%

+15%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

+20%

Where	is	the	puck	going?



+33-40%

Where	is	the	puck	going?	(Ethernet)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

Tape	is	dead,	
Disk	is	tape,	
SSD	is	disk,	
RAM	is	the	king!	

-	Jim	Gray

+15%

+15%

+20%

+33-40%

Where	is	the	puck	going?



• CPU	is	becoming	the	core	bottleneck	

• Storage	devices	can	achieve	10-100x	higher	throughput	
• NIC	can	transmit/receive	10-100x	more	packets	

• PCIe	can	transmit/receive	10-100x	more	data	

• But	CPU	capacity	is	mostly	stagnant	

• New	devices	are	emerging	

• New	hardware	accelerators:	for	apps	that	require	more	compute	

• FPGAs,	TPUs,	SmartNICs	

• Non-volatile	memory	devices	

• byte	addressable,	but	persistent	
• 10x	slower	than	main	memory,	10x	faster	than	SSD	

• RDMA	NICs	

• Can	read/write	to	memory	on	other	servers	without	CPU

Many	powerful	implications



CPU	is	becoming	the	bottleneck

• Today,	CPU	involved	in	all	steps	
• Running	applications	
• Kernel	processing	
• I/O	

• Many	of	these	are	heavy-weight	operations	

• Thread	and	process	state	management	

• Context	switches	
• Swapping	and	paging	
• Storage	access	
• Network	access	

• Need	to	rethink	design/optimization	of	each	of	these	layers



Emergence	of	new	devices	[Compute]

• New	hardware	accelerators:	for	apps	that	require	more	compute	
• How	should	the	OS	enable	sharing	of	accelerators?	
• How	should	the	OS	orchestrate	traditional	CPU	and	accelerator	resources?	
• How	should	CPUs	and	accelerators	share	memory?	

• Requires	rethinking	the	abstractions	developed	over	decades		
• Threads	
• Processes	
• Virtual	address	space,	and	virtual	memory	

• Sockets



Emergence	of	new	devices	[Storage]

• Non-volatile	memory	devices	
• Byte-addressable—like	main	memory	
• Persistent—like	SSDs	

• 10x	slower	than	main	memory,	10x	faster	than	SSDs	

• Requires	rethinking	the	abstractions	developed	over	decades		
• Virtual	address	space	
• Virtual	memory	

• Page	replacement



0

25

50

75

100

2005 2010 2018 2023

Bandwidth

• Under	zero	queueing:	
• Remote	memory	access	takes	less	than	6.3us	

• Local	SSD	access	latency	today	is	25us	(hardware,	ignoring	stack)	
• Remote	Direct	Memory	Access	(RDMA)	becomes	feasible

Remote	Memory	Faster	than	Local	Storage



Emergence	of	new	devices	[Network]

• Remote	Direct	Memory	Access	
• Enables	accessing	remote	server	memory….	

• …without	involving	remote	server	CPU	

• “Kernel-bypass”:	CPUs	can	read/write	data	to	NIC	without	kernel	

• Requires	rethinking	the	abstractions	developed	over	decades		
• Sockets	
• Protection/isolation	
• Virtual	address	space,	and	virtual	memory



• Lot	of	research	in	“user	space	designs”	and	kernel-bypass	
• Minimize	kernel	involvement	

• Low-overhead	CPU	scheduling	
• Lots	of	interesting	challenges	

• Lot	of	research	in	low-overhead	storage	stack	design	
• Revisiting	File	systems,	virtual	memory,	block	layer,	…	

• To	minimize	CPU	utilization,	to	achieve	low	latency	and	high	throughput	

• Extremely	interesting	challenges	

• Lot	of	research	in	low-overhead	network	stack	design	
• Revisiting	the	many	layers	within	the	network	stack	

• To	minimize	CPU	utilization,	to	achieve	low	latency	and	high	throughput	

• Requires	rethinking	host	architecture,	and	host	network	
• One	of	the	biggest	challenges	faced	by	the	OS	community

Operating	Systems	are	the	bottleneck	again!



• These	are	exciting	times	for	operating	systems	
• The	first	ever	since	the	invention	of	SSDs!	
• You	are	witness	to	the	transformation!!!!	

• And,	I	am	glad	I	got	the	chance	to	introduce	you	to	this	world	:-)	

• You	have	made	me	a	better	teacher!!!!	

• Thank	you.	

• Wherever	you	end	up:	

• Please	remember	me	

• Say	hello	if	you	see	me	

• Remember,	there	is	nothing	more	important	than	

• Knowing	the	fundamentals!!!!	

• Being	happy!!!!

Closing	Thoughts




