
Operating	Systems

CS4410

Where’s	the	puck	going?

Rachit	Agarwal



Announcements

• Final:	12/11	@	9AM,	Barton	Hall,	100	west


• Review	session:	12/08,	2PM,	zoom	(post	on	Ed	discussions)


• Lost	sessions:	thanks	for	using;	makes	me	happy	about	my	experiments


• Please	fill	out	the	course	evaluations

• Easy	way	to	get	5%

• Please	be	constructive	(evaluations	are	for	many	eyes,	not	just	me)

2



Taking	25	steps	back!

3



A	software	layer	designed	with	three	goals:	


• Enable	applications	to	conveniently	access	hardware

• Manage	all	hardware	resources


• Implement	common	services	for	applications

What	is	an	operating	system,	and	what	does	it	do?



What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware

• CPU:	threads

• Memory:	virtual	memory


• Storage	devices:	files

• Network:	sockets

• Server:	collection	of	resources	needed	by	an	application


• processes,	VM,	containers



What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware


• Manages	hardware	resources


• Resource	allocation	to	individual	applications

• Resource	sharing	across	concurrently	running	applications

• Resource	isolation	across	concurrently	running	applications



What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware


• Manages	hardware	resources


• Implements	common	services	for	applications


• Security,	protection	and	authentication

• Reliability	

• Communication

• Input/output	operations

• Program	execution

• ….



Four	Fundamental	OS	Concepts

• Thread:	Execution	Context

• A	single,	sequential	execution	context


• Address	space	(with	translation)

• Program's	view	of	memory	is	distinct	from	physical	memory


• Process:	an	instance	of	a	running	program


• Address	Space	+	One	or	more	Threads	+	…


• Protection/Isolation

• Only	the	“system”	can	access	certain	resources


• Combined	with	translation,	isolates	programs	from	each	other



• A	single,	sequential	execution	context


• A	virtual	core:	provides	illusion	of	infinite	cores

• Enables	efficient	multiplexing	of	physical	cores…


• …across	concurrently	running	applications


• Challenges	in	designing	virtual	cores

• Scheduling,	synchronization


• The	OS	provides	protection/isolation	at	process	granularity

• Each	thread	has	its	own	state

• Can	access	other	threads’	state	(within	the	same	process)

Threads



• Many	different	possible	scheduling	mechanisms


• FIFO,	SJF,	EDF,	RR,	SRTF

• Some	are	preemptive,	some	are	not	preemptive


• No	one-size-fits-all	solution


• Our	focus:	understanding	tradeoffs	(pros	and	cons)	of	each	mechanism


• And	using	the	insights	to	build	a	near-ideal	CPU	scheduler

• Very	close	to	the	Linux	CFS	scheduler


• Some	conceptual	takeaways	that	we	studied


• Priority	scheduling	can	“emulate”	most	scheduling	mechanisms


• Priorities	should	be	used	to	define	physical	core	share

• Rather	than	strictly	preferential	job	scheduling

CPU	scheduling



• Coordination	between	multiple…


• …threads	within	the	same	protection/isolation	domain


• …processes	and	threads	operating	on	shared	data


• A	hard	problem	


• No	“algorithm”	to	design	a	correct-by-design	program


• Our	focus:	

• Understanding	the	core	challenges	in	synchronization

• A	suite	of	techniques	that	can	be	used


• Locks,	semaphores,	condition	variables,	monitors


• Hardware	support	for	synchronization

Synchronization



• Virtual	address	space:	virtualizing	physical	memory	address	space


• Enables	efficient	multiplexing	of	memory…


• …across	concurrently	running	applications


• We	focused	on	three	aspects	in	memory	management


• Efficient	sharing	of	physical	resources

• Paging,	and	page	replacement


• Space	and	time	efficient	address	translation


• Space	efficiency:	multi-level	page	tables


• Time	efficiency:	TLB,	small	#levels	in	multi-level	page	tables


• Protection

• Apps	use	virtual	address,	kernel	handles	physical	addresses

Memory	management



• Virtual	memory:	provides	illusion	of	infinite	memory


• By	swapping/paging	data	to	secondary	storage

• Each	program	gets	the	illusion	of	having	dedicated,	infinite,	memory


• Paging

• Page	faults

• Page	replacement	mechanisms:	


• Optimal	(Belady’s	algorithm)


• LRU

• Approximating	LRU:	The	clock	algorithm


• Working	set	page	replacement


• Local	and	global	page	replacement

Memory	management



• The	OS	must	handle	all	IO	devices


• Storage	devices:	HDD,	SSD

• Network	devices:	NIC

• Peripheral	devices:	mouse,	keyboards,	…


• And	all	buses:	memory	bus,	I/O	bus,	peripheral	bus


• Mechanisms:	Interrupt-driven	I/O,	DMA


• Devices:	Mostly	SSD,	brief	discussion	on	HDD

Beyond	threads,	processes	and	memory



• The	OS	must	handle	all	IO	devices


• Storage	devices:	HDD,	SSD

• Network	devices:	NIC

• Peripheral	devices:	mouse,	keyboards,	…


• And	all	buses:	memory	bus,	I/O	bus,	peripheral	bus


• OS	support	for	handling	storage	devices

• File	systems


• contiguous,	linked	list,	tree-based	multi-level	index	file	storage


• consistent	updates

• Block	layer

• Device	drivers	(minimal	discussion)

Beyond	threads,	processes	and	memory



• The	OS	must	handle	all	IO	devices


• Storage	devices:	HDD,	SSD

• Network	devices:	NIC

• Peripheral	devices:	mouse,	keyboards,	…


• And	all	buses:	memory	bus,	I/O	bus,	peripheral	bus


• OS	support	for	handling	network	devices

• The	entire	“network	stack"

• End-to-end	story

• Various	functionalities	that	interact	with	other	layers


• Sockets	and	ports

• Packet	steering,	and	tradeoffs

• Packet	aggregation,	and	tradeoffs

Beyond	threads,	processes	and	memory



Taking	1	step	forward!

17



Skate	where	the	puck’s	going,	
not	where	it’s	been!


-	Walter	Gretzky



Memory	bus	

(80	GB/s)

PCIe	

(1x16	GB/s)

SATA

(0.05-0.1	GB/s)Et

he
rn
et



(1
.2
5	
G
B/
s)

Size

(TB)

Random	
Access

(us)

Seq.	
Access	
(GB/s)

0.1 0.1 80

1 25 1x

10 4000 0.1x

Where	is	the	puck	right	now?



Memory	bus	

(80	GB/s)

PCIe	

(1x16	GB/s)

SATA

(0.05-0.1	GB/s)Et

he
rn
et



(1
.2
5	
G
B/
s)

Where	is	the	puck	going?



2016:	+10%

2016:	+18-20%

Where	is	the	puck	going?	(CPU	performance)



• #Cores:	+18-20%


• Per	core:	+10%
Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32%

Where	is	the	puck	going?



+29%

Where	is	the	puck	going?	(DRAM	capacity)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

Tape	is	dead,

Disk	is	tape,

SSD	is	disk,

RAM	is	the	king!


-	Jim	Gray

Where	is	the	puck	going?



+15%

Where	is	the	puck	going?	(Memory	bus)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

+15%

Tape	is	dead,

Disk	is	tape,

SSD	is	disk,

RAM	is	the	king!


-	Jim	Gray

Where	is	the	puck	going?



Ba
nd

w
id
th
	p
er
	la
ne

	(G
bp

s)

0

4

8

12

16

Year

2002 2004 2006 2008 2010 2012 2014 2016 2018

+15%

Where	is	the	puck	going?	(PCIe)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

+15%

+15%

Tape	is	dead,

Disk	is	tape,

SSD	is	disk,

RAM	is	the	king!


-	Jim	Gray

+20%

Where	is	the	puck	going?



+33-40%

Where	is	the	puck	going?	(Ethernet)



Memory	bus

PCIe

SATA

Et
he

rn
et

+30-32% +29%

>	+33%

Tape	is	dead,

Disk	is	tape,

SSD	is	disk,

RAM	is	the	king!


-	Jim	Gray

+15%

+15%

+20%

+33-40%

Where	is	the	puck	going?



• CPU	is	becoming	the	core	bottleneck


• Storage	devices	can	achieve	10-100x	higher	throughput

• NIC	can	transmit/receive	10-100x	more	packets


• PCIe	can	transmit/receive	10-100x	more	data


• But	CPU	capacity	is	mostly	stagnant


• New	devices	are	emerging


• New	hardware	accelerators:	for	apps	that	require	more	compute


• FPGAs,	TPUs,	SmartNICs


• Non-volatile	memory	devices


• byte	addressable,	but	persistent

• 10x	slower	than	main	memory,	10x	faster	than	SSD


• RDMA	NICs


• Can	read/write	to	memory	on	other	servers	without	CPU

Many	powerful	implications



CPU	is	becoming	the	bottleneck

• Today,	CPU	involved	in	all	steps

• Running	applications

• Kernel	processing

• I/O


• Many	of	these	are	heavy-weight	operations


• Thread	and	process	state	management


• Context	switches

• Swapping	and	paging

• Storage	access

• Network	access


• Need	to	rethink	design/optimization	of	each	of	these	layers



Emergence	of	new	devices	[Compute]

• New	hardware	accelerators:	for	apps	that	require	more	compute

• How	should	the	OS	enable	sharing	of	accelerators?

• How	should	the	OS	orchestrate	traditional	CPU	and	accelerator	resources?

• How	should	CPUs	and	accelerators	share	memory?


• Requires	rethinking	the	abstractions	developed	over	decades	

• Threads

• Processes

• Virtual	address	space,	and	virtual	memory


• Sockets



Emergence	of	new	devices	[Storage]

• Non-volatile	memory	devices

• Byte-addressable—like	main	memory

• Persistent—like	SSDs


• 10x	slower	than	main	memory,	10x	faster	than	SSDs


• Requires	rethinking	the	abstractions	developed	over	decades	

• Virtual	address	space

• Virtual	memory


• Page	replacement



0

25

50

75

100

2005 2010 2018 2023

Bandwidth

• Under	zero	queueing:

• Remote	memory	access	takes	less	than	6.3us


• Local	SSD	access	latency	today	is	25us	(hardware,	ignoring	stack)

• Remote	Direct	Memory	Access	(RDMA)	becomes	feasible

Remote	Memory	Faster	than	Local	Storage



Emergence	of	new	devices	[Network]

• Remote	Direct	Memory	Access

• Enables	accessing	remote	server	memory….


• …without	involving	remote	server	CPU


• “Kernel-bypass”:	CPUs	can	read/write	data	to	NIC	without	kernel


• Requires	rethinking	the	abstractions	developed	over	decades	

• Sockets

• Protection/isolation

• Virtual	address	space,	and	virtual	memory



• Lot	of	research	in	“user	space	designs”	and	kernel-bypass

• Minimize	kernel	involvement


• Low-overhead	CPU	scheduling

• Lots	of	interesting	challenges


• Lot	of	research	in	low-overhead	storage	stack	design

• Revisiting	File	systems,	virtual	memory,	block	layer,	…


• To	minimize	CPU	utilization,	to	achieve	low	latency	and	high	throughput


• Extremely	interesting	challenges


• Lot	of	research	in	low-overhead	network	stack	design

• Revisiting	the	many	layers	within	the	network	stack


• To	minimize	CPU	utilization,	to	achieve	low	latency	and	high	throughput


• Requires	rethinking	host	architecture,	and	host	network

• One	of	the	biggest	challenges	faced	by	the	OS	community

Operating	Systems	are	the	bottleneck	again!



• These	are	exciting	times	for	operating	systems

• The	first	ever	since	the	invention	of	SSDs!

• You	are	witness	to	the	transformation!!!!


• And,	I	am	glad	I	got	the	chance	to	introduce	you	to	this	world	:-)


• You	have	made	me	a	better	teacher!!!!


• Thank	you.


• Wherever	you	end	up:


• Please	remember	me


• Say	hello	if	you	see	me


• Remember,	there	is	nothing	more	important	than


• Knowing	the	fundamentals!!!!


• Being	happy!!!!

Closing	Thoughts




