CS4410

Operating Systems
Lecture 25: The OS Network Stack

Rachit Agarwal

Context for today’s lecture

* A quick overview of the OS network stack
* Has evolved over decades
 Many different components
 Many different protocols

* Today is just a brief overview (details in 4450)

* What shall we focus on?

* Interaction with other components that we have studied in 4410

Recap: what do computer networks do?

A computer network delivers data between the end points

* One and only one task: Delivering the data

* This delivery is done by:
* Chopping the data into packets

* Sending individual packets across the network
* Reconstructing the data at the end points

e That is all!

Recap: Data delivery as a fundamental goal

* Support the logical equivalence of Interprocess Communication (IPC)

 Mechanism for “processes on the same host” to exchange messages

 Computer networks allow “processes on two different hosts” to
exchange messages

* Clean separation of concerns
 Computer networks deliver data
e Applications running on end hosts decide what to do with the data

* Keeps networks simple, general and application-agnostic

End-to-end story

Four fundamental problems!

Naming, addressing: Locating the destination, receiver app
Routing: Finding a path to the destination host
Forwarding: Sending data from the sender app to the receiver app

Reliability: Handling failures, packet drops, etc.

Fundamental problem #1: Naming and Addressing

e Network Address: where host is located

* Requires an address for the destination host

 Host Name: which host it is
* Consider when you access a website

* URL is user-level name (eg, www.cornell.edu)

* Network needs address (eg, where is www.cornell.edu)?

 Must map names to addresses

 Just like we use an address book to map human names to addresses

Must be done at the end-host;
The source knows the name—

Maps that name to an address using DNS!

(Done only once, when establishing a connection—low overhead)

http://www.cornell.edu
http://www.cornell.edu

Fundamental problem #2

Routing packets through network elements (eg, routers) to destination

e Given destination address (and name), how does each switch/router
know where to send the packet so that the packet reaches its destination

* When a packet arrives at a router
* a routing table determines which outgoing link the packet is sent on
 Computed using routing protocols

Mostly done within the network switches/routers;
Has little to do with the OS

Fundamental problem #3

Queueing and Forwarding of packets at switches/routers

* Queueing: When a packet arrives, store it in “input queues”
 When a packet arrives:
* Look up its destination’s address (how?)

* Find the link on which the packet will be forwarded (how?)

* Forwarding: When the outgoing link free
* Pick a packet from the corresponding virtual output queue

e forward the packet!

Done at switches/routers;
Has little to do with the OS

Fundamental problem #3

Queueing and Forwarding of packets at the host

* When a process wants access to the network, it opens a socket, which is
associated with a port

* Socket: an OS mechanism that connects processes to the network stack

* Port: number that identifies that particular socket
e used by the OS to direct incoming packets

* There is a sender-side socket/port, and a receiver-side socket/port

Done at the host OS;
Lot of interesting tradeoffs

What must packets carry to enable forwarding?

* Packets must describe where it should be sent
e Requires an address for the destination host

* A port number (socket identifier) for the destination application

* Packets must describe where its coming from
* For handling failures, etc.
e Requires an address for the source host

* A port number (socket identifier) for the source application

* Packets must carry data

e can be bits in a file, image, whatever

Must be done at the host;
Network just delivers the packet

Fundamental problem #4

How do you deliver packets reliable?

* Packets can be dropped along the way
e Buffers in router can overflow
* Routers can crash while buffering packets

 Links can garble packets

 How do you make sure packets arrive safely on an unreliable network?
* Or, at least, know if they are delivered?

e Want no false positives, and high change of success

Mostly implemented at the host (end-to-end principle)
Using a protocol called TCP

There is also an unreliable transmission mechanism: UDP

The end-to-end story

* Application opens a socket that allows it to connect to the network stack
 Maps name of the web site to its address using DNS

* The network stack at the source embeds the address and port for both
the source and the destination in packet header

* Each router constructs a routing table using a distributed algorithm

* Each router uses destination address in the packet header to look up the
outgoing link in the routing table
 And when the link is free, forwards the packet

 When a packet arrives the destination:

 The network stack at the destination uses the port to forward the
packet to the right application

Four fundamental problems!—what does the OS do?

 Naming, addressing: Locating the destination

» Setting up connection (name resolution, etc.)—low overhead

* Routing: Finding a path to the destination
e Little or nothing

* Forwarding: Sending data to the destination
* Create/insert packet headers—high overhead
* Move data around based on sockets/ports—high overhead

* Enable applications to read/write data—very high overheads

* Reliability: Handling failures, packet drops, etc.

* Protocol-level processing—high overhead

Questions?

End-host network stack: Questions to ask

Where is the sender-side socket located?
* Depends on where the application is currently scheduled (CPU scheduler)

How does the OS move packets from the sender-side socket to the network hardware?
e Datais in some memory location specified by the socket (virtual memory)
 The OS performs sender-side processing (create packets, headers, TCP processing, ..)

* Data moved to the network hardware using DMA (studied in 10 and devices)

Where is the receiver-side socket located?
 Depends on where the application is currently scheduled (CPU scheduler)

How does the OS move packets from the network hardware to the receiver-side socket?
e OS gives hardware some memory addresses to write the data (virtual memory)

* Network hardware copies data using DMA (studied in 10 and devices)

The OS knows where the data is copied (virtual memory)

The OS performs receiver-side processing (reliability, strip off headers, etc...)

Tells the application where to read the data from (virtual memory)

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

L

~ socket j i ~ socket
) I ':l Wake-up Application Thread.

ol TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]

[XI:’S] | " RPS/RFS -— Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' % M J

v Il v
D — "RXNAPI Poll for RX Packets.

Write system call

* Initiates data copy

* From the application buffers (address space) to kernel buffers

* High CPU overheads
* Just moving data around (read from one buffer, write to another buffer)

 All kinds of caching and page replacement issues come up

* Packets are constructed at this point
* Push data to socket’s write queue until the queue is full
e Block until queue is empty

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

TCP/IP processing

 All reliability-specific operations

* If protocol says okay to send data
* Pop packets from socket’s write queue and push to the next layer

 Must not delete packets yet, in case the packet gets lost in the network

* Delete packets once ack-ed by the receiver
* A lot of book keeping (could be complicated)

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

NetFilter

* Performs “filtering” of packets

e e.g., firewall

* Network address/port translation

e E.g., when one wants to hide sender port/addresses from other servers

* In Linux, iptable and nftable commands are used for filtering
* Lightweight

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

XPS

 Network Hardware (NIC) has multiple queues

* Just like other storage hardware that we have discussed

* To which queue should one forward packets from a particular socket?
 How should the mapping work?
* All sockets forward to one queue?
e Each socket is assigned its own queue?

 |f many-to-many mapping, how to map sockets to queues?

* Linux XPS layer is used to define/perform this mapping
e Usually maps all sockets running on the same core to the same NIC queue
e But can define any mapping

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

Queueing Discipline

* Performs “traffic shaping” and packet scheduling
* Shaping: how much bandwidth to give to each socket
e Scheduling: among sockets mapped to a queue, which packet to choose next?

* Performed on a per-queue basis

« Each transmit queue has its own queueing discipline (qdisc) in the OS

* In Linux, tc command is used for managing qdisc

(A] [hp]
Sockev
Rueue H EI
\\ // Ll
_J PDUCj p
‘ Qdisc I Pric@) > Pe(@)
|8

0D

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

Segmentation

Traditionally, data processed and transmitted at 1500byte granularity
* But, if the application has a lot of data to send (on the same socket)
 Many of the previous processing steps will be similar for all packets
* Individual processing unnecessarily wastes CPU cycles

* High packet processing overheads

General Segmentation Offload (GRO)
e Software-based solution to batch packet processing (e.g., 64KB granularity)
e But packets transmitted at 1500byte granularity

* Thus, once processed by the OS, we must “segment” packets before transmission

GSO saves cycles for packet processing using batches of packets (¥64KB)
* But has overheads (implemented in software, after all): perform segmentation

TCP Segmentation offload (TSO)
* Perform packet processing in batches in the OS
« Offload segmentation of packet batches to the hardware
* Most NICs support TSO

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

Driver Tx

 Manage “shared memory” between the NIC and the OS
* Share memory region: a ring (circular) buffer
* Each element in the buffer referred to as a “packet descriptor”

e Memory address where data in a particular packet will be copied

* Operations:
* Write data into one of the descriptors
* Signal to the NIC that data is ready to be transmitted (ring doorbell)
e Ring doorbell in per-descriptor basis has high CPU overheads
* NIC then fetches packets from DRAM pointed by the packet descriptor

e Descriptors reinserted into the ring buffer as data in a descriptor is transmitted

NIC sends -
packet 0]]

Application <\|-~7
sends packet ~__ |

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

Driver Rx

* NICs maintain multiple Rx ring buffers

* For each buffer, OS does the following operations:
* Prepare new descriptors for the NIC to do DMA
* Push new descriptors containing empty pages to the ring buffer

* Once NIC finishes DMA, unmap DMA mappings

NIC sends

packet <:E§}

'LCD<\ @4@ Q ?D@
/Q = /@ hen > .
=% ﬁi@@/

tail
Application N
|]
sends packet ~__ |

s/

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

IRQ Handling and NAPI

* Packets are DMA-ed to Rx ring buffer in shared (kernel) memory

* NIC triggers an interrupt to wake up OS for handling packets

 Downside: per-packet interrupt has very high overheads

 NAPI (new API): disable the interrupt and start a poll loop for handling packets
 Reduce #interrupts
* Only the first packet triggers an interrupt

{:—g‘: 3. NAPL Po\w\a
/N \@Rx l-lmﬂ Buﬁ@r‘

Lo
e

]
(]

2. HW IR

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

Generic Receiver Offload (GRO)

* Receiver-side optimization similar to GSO/TSO

« Aggregate packets of the same flow before TCP/IP processing
e software-based
e Extra CPU overheads (similar to GSO)

* LRO: offload GRO to the hardware (NIC)
 Downside: NIC has limited memory to store packets

N
>
BN [©
I V 4
I V4
/s /
F’ok;#! 2

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

Packet and flow steering

 Which core should NIC forward packets to?

* RSS/RPS: choose core based on the hash of the packet

App |
header @: @:
e RSS: hardware-based; RPS: software-based
Core 0 Core |
* Scale packet processing with bandwidth " ~

 Downside: NUMA, cache unawareness aqu/m:SL _i RSS/APS
---——r =l

. o . ' HCPK't>:C‘OPe \:
* aRFS/RFS: choose core based on where the application is ,
running (o |
 aRFS: hardware-based; RFS: software-based]El

* Benefits: Read/write data from local cache/memory

 Downside: poor scalability when #apps in the same
core increases

Network Stack Data Path

1
Sender ! Receiver
1

AVe]e

1

~ socket j i ~ socket
) I ':l Wake-up Application Thread.
. TCTHP] [TCP/IP]
Select the Hardware Queue for TX. | NeTter] | | Netglter]
[XPS } | " RPS/RFS = Select the CPU for TCP/IP Processing.
Packet Scheduling. — 0;%129 J ' GRO
v |l v
.~ GSO — "RX NAPI Poll for RX Packets.
i

. Driver TX :l | IRQ
1 A
: |

R .
[}

’]E] S Jou
1

TCP/IP and read system call

* Push packets to socket read queue

 Wake up application thread for copying data to the application buffers

* Downside: extra scheduling overhead/delay

* Send ACK packets
e Sender can clear out packets that have been delivered

