
Opera&ng	Systems	

Lecture	25:	The	OS	Network	Stack

CS4410

Rachit	Agarwal



Context	for	today’s	lecture

• A	quick	overview	of	the	OS	network	stack	
• Has	evolved	over	decades	
• Many	different	components	

• Many	different	protocols	

• Today	is	just	a	brief	overview	(details	in	4450)	

• What	shall	we	focus	on?	

• Interaction	with	other	components	that	we	have	studied	in	4410



A	computer	network	delivers	data	between	the	end	points	

• One	and	only	one	task:	Delivering	the	data	

• This	delivery	is	done	by:	
• Chopping	the	data	into	packets	
• Sending	individual	packets	across	the	network	
• Reconstructing	the	data	at	the	end	points	

• That	is	all!

Recap:	what	do	computer	networks	do?



• Support	the	logical	equivalence	of	Interprocess	Communication	(IPC)	

• Mechanism	for	“processes	on	the	same	host”	to	exchange	messages	

• Computer	networks	allow	“processes	on	two	different	hosts”	to	
exchange	messages	

• Clean	separation	of	concerns	
• Computer	networks	deliver	data	

• Applications	running	on	end	hosts	decide	what	to	do	with	the	data	

• Keeps	networks	simple,	general	and	application-agnostic

Recap:	Data	delivery	as	a	fundamental	goal



End-to-end	story



• Naming,	addressing:	Locating	the	destination,	receiver	app	

• Routing:	Finding	a	path	to	the	destination	host	

• Forwarding:	Sending	data	from	the	sender	app	to	the	receiver	app	

• Reliability:	Handling	failures,	packet	drops,	etc.

Four	fundamental	problems!



• Network	Address:	where	host	is	located	
• Requires	an	address	for	the	destination	host	

• Host	Name:	which	host	it	is	

• Consider	when	you	access	a	website	
• URL	is	user-level	name	(eg,	www.cornell.edu)	

• Network	needs	address	(eg,	where	is	www.cornell.edu)?	

• Must	map	names	to	addresses	

• Just	like	we	use	an	address	book	to	map	human	names	to	addresses

Must	be	done	at	the	end-host;	

The	source	knows	the	name—	

Maps	that	name	to	an	address	using	DNS!	

(Done	only	once,	when	establishing	a	connection—low	overhead)

Fundamental	problem	#1:	Naming	and	Addressing

http://www.cornell.edu
http://www.cornell.edu


Routing	packets	through	network	elements	(eg,	routers)	to	destination	

• Given	destination	address	(and	name),	how	does	each	switch/router	
know	where	to	send	the	packet	so	that	the	packet	reaches	its	destination	

• When	a	packet	arrives	at	a	router	

• a	routing	table	determines	which	outgoing	link	the	packet	is	sent	on	

• Computed	using	routing	protocols

Fundamental	problem	#2

Mostly	done	within	the	network	switches/routers;	

Has	little	to	do	with	the	OS



Queueing	and	Forwarding	of	packets	at	switches/routers	

• Queueing:	When	a	packet	arrives,	store	it	in	“input	queues”		

• When	a	packet	arrives:	

• Look	up	its	destination’s	address	(how?)	
• Find	the	link	on	which	the	packet	will	be	forwarded	(how?)	

• Forwarding:	When	the	outgoing	link	free	

• Pick	a	packet	from	the	corresponding	virtual	output	queue	

• forward	the	packet!

Fundamental	problem	#3

Done	at	switches/routers;	

Has	little	to	do	with	the	OS



Fundamental	problem	#3

Queueing	and	Forwarding	of	packets	at	the	host	

• When	a	process	wants	access	to	the	network,	it	opens	a	socket,	which	is	
associated	with	a	port	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	network	stack	

• Port:	number	that	identifies	that	particular	socket	

• used	by	the	OS	to	direct	incoming	packets	

• There	is	a	sender-side	socket/port,	and	a	receiver-side	socket/port

Done	at	the	host	OS;	

Lot	of	interesting	tradeoffs



• Packets	must	describe	where	it	should	be	sent	

• Requires	an	address	for	the	destination	host	
• A	port	number	(socket	identifier)	for	the	destination	application	

• Packets	must	describe	where	its	coming	from	

• For	handling	failures,	etc.	
• Requires	an	address	for	the	source	host	
• A	port	number	(socket	identifier)	for	the	source	application	

• Packets	must	carry	data	

• can	be	bits	in	a	file,	image,	whatever

What	must	packets	carry	to	enable	forwarding?

Must	be	done	at	the	host;	

Network	just	delivers	the	packet



How	do	you	deliver	packets	reliable?	

• Packets	can	be	dropped	along	the	way	
• Buffers	in	router	can	overflow	
• Routers	can	crash	while	buffering	packets	
• Links	can	garble	packets	

• How	do	you	make	sure	packets	arrive	safely	on	an	unreliable	network?	

• Or,	at	least,	know	if	they	are	delivered?	
• Want	no	false	positives,	and	high	change	of	success

Fundamental	problem	#4

Mostly	implemented	at	the	host	(end-to-end	principle)	

Using	a	protocol	called	TCP		

There	is	also	an	unreliable	transmission	mechanism:	UDP



• Application	opens	a	socket	that	allows	it	to	connect	to	the	network	stack	

• Maps	name	of	the	web	site	to	its	address	using	DNS	

• The	network	stack	at	the	source	embeds	the	address	and	port	for	both	
the	source	and	the	destination	in	packet	header	

• Each	router	constructs	a	routing	table	using	a	distributed	algorithm	

• Each	router	uses	destination	address	in	the	packet	header	to	look	up	the	
outgoing	link	in	the	routing	table	

• And	when	the	link	is	free,	forwards	the	packet		

• When	a	packet	arrives	the	destination:		

• The	network	stack	at	the	destination	uses	the	port	to	forward	the	
packet	to	the	right	application

The	end-to-end	story



• Naming,	addressing:	Locating	the	destination	

• Setting	up	connection	(name	resolution,	etc.)—low	overhead	

• Routing:	Finding	a	path	to	the	destination	
• Little	or	nothing	

• Forwarding:	Sending	data	to	the	destination	
• Create/insert	packet	headers—high	overhead	

• Move	data	around	based	on	sockets/ports—high	overhead	

• Enable	applications	to	read/write	data—very	high	overheads	

• Reliability:	Handling	failures,	packet	drops,	etc.	
• Protocol-level	processing—high	overhead

Four	fundamental	problems!—what	does	the	OS	do?



Questions?



• Where	is	the	sender-side	socket	located?	

• Depends	on	where	the	application	is	currently	scheduled	(CPU	scheduler)	

• How	does	the	OS	move	packets	from	the	sender-side	socket	to	the	network	hardware?	

• Data	is	in	some	memory	location	specified	by	the	socket	(virtual	memory)	

• The	OS	performs	sender-side	processing	(create	packets,	headers,	TCP	processing,	..)	

• Data	moved	to	the	network	hardware	using	DMA	(studied	in	IO	and	devices)	

• Where	is	the	receiver-side	socket	located?	

• Depends	on	where	the	application	is	currently	scheduled	(CPU	scheduler)	

• How	does	the	OS	move	packets	from	the	network	hardware	to	the	receiver-side	socket?	

• OS	gives	hardware	some	memory	addresses	to	write	the	data	(virtual	memory)	

• Network	hardware	copies	data	using	DMA	(studied	in	IO	and	devices)	

• The	OS	knows	where	the	data	is	copied	(virtual	memory)	

• The	OS	performs	receiver-side	processing	(reliability,	strip	off	headers,	etc…)	

• Tells	the	application	where	to	read	the	data	from	(virtual	memory)

End-host	network	stack:	Questions	to	ask



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Initiates	data	copy	

• From	the	application	buffers	(address	space)	to	kernel	buffers	

• High	CPU	overheads	

• Just	moving	data	around	(read	from	one	buffer,	write	to	another	buffer)	

• All	kinds	of	caching	and	page	replacement	issues	come	up	

• Packets	are	constructed	at	this	point	

• Push	data	to	socket’s	write	queue	until	the	queue	is	full	

• Block	until	queue	is	empty

Write	system	call



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• All	reliability-specific	operations	

• If	protocol	says	okay	to	send	data	

• Pop	packets	from	socket’s	write	queue	and	push	to	the	next	layer	

• Must	not	delete	packets	yet,	in	case	the	packet	gets	lost	in	the	network	

• Delete	packets	once	ack-ed	by	the	receiver	

• A	lot	of	book	keeping	(could	be	complicated)

TCP/IP	processing



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Performs	“filtering”	of	packets	

• e.g.,	firewall	

• Network	address/port	translation	

• E.g.,	when	one	wants	to	hide	sender	port/addresses	from	other	servers	

• In	Linux,	iptable	and	nftable	commands	are	used	for	filtering	

• Lightweight

NetFilter



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Network	Hardware	(NIC)	has	multiple	queues	

• Just	like	other	storage	hardware	that	we	have	discussed	

• To	which	queue	should	one	forward	packets	from	a	particular	socket?	

• How	should	the	mapping	work?	

• All	sockets	forward	to	one	queue?	

• Each	socket	is	assigned	its	own	queue?	

• If	many-to-many	mapping,	how	to	map	sockets	to	queues?	

• Linux	XPS	layer	is	used	to	define/perform	this	mapping	

• Usually	maps	all	sockets	running	on	the	same	core	to	the	same	NIC	queue	

• But	can	define	any	mapping

XPS



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Performs	“traffic	shaping”	and	packet	scheduling	

• Shaping:	how	much	bandwidth	to	give	to	each	socket	

• Scheduling:	among	sockets	mapped	to	a	queue,	which	packet	to	choose	next?	

• Performed	on	a	per-queue	basis	

• Each	transmit	queue	has	its	own	queueing	discipline	(qdisc)	in	the	OS	

• In	Linux,	tc	command	is	used	for	managing	qdisc

Queueing	Discipline



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Traditionally,	data	processed	and	transmitted	at	1500byte	granularity	

• But,	if	the	application	has	a	lot	of	data	to	send	(on	the	same	socket)	

• Many	of	the	previous	processing	steps	will	be	similar	for	all	packets	

• Individual	processing	unnecessarily	wastes	CPU	cycles		

• High	packet	processing	overheads	

• General	Segmentation	Offload	(GRO)	

• Software-based	solution	to	batch	packet	processing	(e.g.,	64KB	granularity)	

• But	packets	transmitted	at	1500byte	granularity	

• Thus,	once	processed	by	the	OS,	we	must	“segment”	packets	before	transmission	

• GSO	saves	cycles	for	packet	processing	using	batches	of	packets	(~64KB)	

• But	has	overheads	(implemented	in	software,	after	all):	perform	segmentation	

• TCP	Segmentation	offload	(TSO)	

• Perform	packet	processing	in	batches	in	the	OS	

• Offload	segmentation	of	packet	batches	to	the	hardware	

• Most	NICs	support	TSO

Segmentation



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Manage	“shared	memory”	between	the	NIC	and	the	OS	

• Share	memory	region:	a	ring	(circular)	buffer	

• Each	element	in	the	buffer	referred	to	as	a	“packet	descriptor”	

• Memory	address	where	data	in	a	particular	packet	will	be	copied	

• Operations:	

• Write	data	into	one	of	the	descriptors	

• Signal	to	the	NIC	that	data	is	ready	to	be	transmitted	(ring	doorbell)	

• Ring	doorbell	in	per-descriptor	basis	has	high	CPU	overheads	

• NIC	then	fetches	packets	from	DRAM	pointed	by	the	packet	descriptor	

• Descriptors	reinserted	into	the	ring	buffer	as	data	in	a	descriptor	is	transmitted

Driver	Tx



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• NICs	maintain	multiple	Rx	ring	buffers	

• For	each	buffer,	OS	does	the	following	operations:	

• Prepare	new	descriptors	for	the	NIC	to	do	DMA	

• Push	new	descriptors	containing	empty	pages	to	the	ring	buffer	

• Once	NIC	finishes	DMA,	unmap	DMA	mappings

Driver	Rx



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Packets	are	DMA-ed	to	Rx	ring	buffer	in	shared	(kernel)	memory	

• NIC	triggers	an	interrupt	to	wake	up	OS	for	handling	packets	

• Downside:	per-packet	interrupt	has	very	high	overheads	

• NAPI	(new	API):	disable	the	interrupt	and	start	a	poll	loop	for	handling	packets	

• Reduce	#interrupts	

• Only	the	first	packet	triggers	an	interrupt

IRQ	Handling	and	NAPI



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Receiver-side	optimization	similar	to	GSO/TSO	

• Aggregate	packets	of	the	same	flow	before	TCP/IP	processing	

• software-based	

• Extra	CPU	overheads	(similar	to	GSO)	

• LRO:	offload	GRO	to	the	hardware	(NIC)	

• Downside:	NIC	has	limited	memory	to	store	packets

Generic	Receiver	Offload	(GRO)



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Which	core	should	NIC	forward	packets	to?	

• RSS/RPS:	choose	core	based	on	the	hash	of	the	packet	

header		

• RSS:	hardware-based;	RPS:	software-based	

• Scale	packet	processing	with	bandwidth	

• Downside:	NUMA,	cache	unawareness	

• aRFS/RFS:	choose	core	based	on	where	the	application	is	

running	

• aRFS:	hardware-based;	RFS:	software-based	

• Benefits:	Read/write	data	from	local	cache/memory	

• Downside:	poor	scalability	when	#apps	in	the	same	

core	increases

Packet	and	flow	steering



Sender

socket

Netfilter

Queuing 

XPS

write

TCP/IP 

Driver TX

App

Receiver

App

socket

GRO

read

IRQ 

RX NAPI

TCP/IP 

GSO

Netfilter

RPS/RFS Select	the	CPU	for	TCP/IP	Processing.
Select	the	Hardware	Queue	for	TX.

Packet	Scheduling.

Poll	for	RX	Packets.

Wake-up	Applicadon	Thread.

Network	Stack	Data	Path



• Push	packets	to	socket	read	queue	

• Wake	up	application	thread	for	copying	data	to	the	application	buffers	

• Downside:	extra	scheduling	overhead/delay	

• Send	ACK	packets	

• Sender	can	clear	out	packets	that	have	been	delivered

TCP/IP	and	read	system	call


