
Linux	kernel	
Block	I/O	Layer



• Block	devices	(e.g.,	HDD,	SSD)	
– Allow	accessing	fixed-size	chunks	of	data	
– The	fixed	size	chucks	of	data	are	called	blocks	

– Block	is	the	smallest	logically	addressable	unit	defined	by	filesystems	(mostly	4KB)

• Linux	kernel	has	block	I/O	layer	for	accessing	block	devices	
– Manage	block	devices	
– Create/schedule	I/O	requests	
– Interface	with	two	layers	

– Upper	layer:	File	System	
– Lower	layer:	Device	Driver	(such	as	NVMe)

Overview:	Accessing	block	devices
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<Device	driver>	
• Create	driver-specific	commands	(e.g.,	NVMe	cmnd)	
• Submit	to	the	I/O	queue	and	inform	the	device	(e.g.,	ring	doorbells)

Overview:	Accessing	block	devices

Filesystem [many]	caches

<Filesystem>	
• Inode	cache,	directory	cache,	buffer	cache,	page	cache	
• Identify	target	data	block	and	read/write	from/to	page	cache	
• Direct	I/O,	cache	miss	for	read,	sync	I/O	go	to	block	layer

Block	device

I/O	system	calls

App.
<Application>	
• Open	a	file	
• Read/write	data	from	the	file

User	space

Kernel	space

Hardware

Block Per-core	
blk-mq

<Block	I/O>	
• Identify	where	to	access,	where	to	copy,	I/O	size,	etc.	
• Create/schedule	I/O	requests



• inode	cache	and	directory	cache	
– Enabling	functionalities	discussed	in	file	systems	
– Faster	access	to	information	in	inode	and	directory	

– Separated	from	“data”	cache

• Page	cache	
– Combines	virtual	memory	and	file	data	
– Caches	recently	read	data	on	persistent	storage	at	the	granularity	of	pages	
– Has	a	notion	of	“file”

All	these	caches

• Buffer	cache	
– Interfaces	with	block	devices	(hardware)		
– Caches	recently	read	data	blocks	on	persistent	storage	
– Has	no	notion	of	“files”—just	blocks



Read	I/O	data	path:	Application
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char buf[1024]; 
ret = read(fd, buf, 1024); 
…

Call	syscall	functions	
on	an	opened	file



Read	I/O	data	path:	Virtual	Filesystem
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char buf[1024]; 
ret = read(fd, buf, 1024); 
…

[Input]	
• fd:	file	descriptor	
• buf:	user	buffer	
• buffer	length:	1024B

(1)	Create	kiocb	that	includes:	
• file	instance	looked-up	by	fd	
• I/O	vector	to	copy	1024B	read-data	to	buf	
• pos:	where	to	read/write	in	the	file
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(1)	Create	kiocb	that	includes:	
• file	instance	looked-up	by	fd	
• I/O	vector	to	copy	1024B	read-data	to	buf	
• pos:	where	to	read	(or	write)	in	the	file

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

(2)	Access	the	file’s	page	cache	via	kiocb

Page Page Page …

Read	I/O	data	path:	Virtual	Filesystem

pos

If	cache	is	hit,	copy	the	pos	page	to	buf	using	
kiocb’s	I/O	vector

[Input]	
• fd:	file	descriptor	
• buf:	user	buffer	
• buffer	length:	1024B

Page



Read	I/O	data	path:	Block	(init.	bio)
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char buf[1024]; 
ret = read(fd, buf, 1024); 
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[Input]	
• file	&	pos	
• Target	page	address

Create	bio	that	includes:	
• Data	block	of	the	device	to	access	
• I/O	vector	to	copy	the	data	block

0 1 … Page Page Page …PageI/O	
vector

[page	cache]

Target	page	address

data

(2)	The	data	block	will	be	DMAed	to	the	
pages	that	bio’s	I/O	vector	points	to

(1)	Find	the	data	block	to	read	
using	filesystem	info	(inode,	pos,	etc.)

(For	direct	I/O,	bio’s	I/O	vector	would	point	to	the	user	buffer	=>	next	slide)
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ret = read(fd, buf, 1024); 
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Direct	I/O:	page	cache	is	not	involved	
• In	general,	page	cache	has	a	single	

cache	policy	(such	as	LRU)	
• Applications	like	DB	might	want	to	

implement	their	own	cache	policy	
with	direct	I/O

Read	I/O	data	path:	Block	(init.	bio)



Read	I/O	data	path:	Block	(init.	request)
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• Where	is	the	request	going?	
– Which	device	
– But	devices	have	multiple	“queues”	

– Which	queue	
– Identified	by	a	“hardware	context”

• Where	should	the	request	response	be	directed?	
– Which	CPU	core	and	which	application	
– Identified	by	a	“software	context”

What	should	a	“request”	contain?

• A	request	identifier	
– tag



Read	I/O	data	path:	Block	(init.	request)
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Create	request	that	includes:	
(1)	bio	list	for	merging	
(2)	blk-mq	mapping	

• Per-core	sw	queue	context	(ctx)	
• hw	queue	context	(hctx)	

(3)	tag	(an	integer	variable)	for	tagging



Read	I/O	data	path:	Block	(merging)
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Merge	multiple	bios	into	a	single	request	
• When	they	are	contiguous	data	blocks	
• Can	reduce	number	of	requests



Read	I/O	data	path:	Block	(blk-mq	mapping	case	1)
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Read	I/O	data	path:	Block	(blk-mq	mapping	case	2)
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hctx[2,1] In	this	example:	
• hctx[*,0]	for	read	I/O	
• hctx[*,1]	for	write	I/O

Current	Linux	kernel	
supports	three	hctx	types:	
• read/write/poll

request



Read	I/O	data	path:	Block	(scheduling)
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ret = read(fd, buf, 1024); 
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When	request	initialization	is	done,		
perform	I/O	scheduling	at	per-req	granularity	
• Linux	supports	Noop/deadline/BFQ/Kyber	
(Noop	skips	I/O	scheduling	step)	

• Existing	schedulers	were	mostly	designed	for	
HDD	(slow	devices)	

• For	NVMe	SSD	(fast	devices),	I/O	scheduling	
may	add	extra	latency,	so	Noop	is	chosen	in	
many	cases



Read	I/O	data	path:	Device	Driver	(NVMe)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

request

cmnd

Create	cmnd	that	includes:	
• request	instance	
• NVMe-specific	data	structures	
(command	header,	etc.)

Perform	NVMe	operations	(next	slide)	
• As	I/O	queues,	NVMe	defines	

submission	queue	(SQ)	and	
completion	queue	(CQ)	per	core



Read	I/O	data	path:	Device	Driver	(NVMe)
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Read	I/O	data	path:	Response
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request (1)	From	the	completion	entry,	
• Extract	the	tag	
• Find	the	corresponding	request	

instance	from	the	tag	
• Call	block-layer	completion	callbacks

kioctx

(2)	For	sync	I/O,	
• Return	to	app

(3)	For	async	I/O,	
• Add	a	completion	event	in	

the	ring	buffer	(kioctx)	
• Signal	the	app	to	wake-up
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char buf[1024]; 
ret = write(fd, buf, 1024); 
…

Page Page Page …

Write	I/O	path	(difference	from	Read)

pos

Page

(1)	Write	the	user	data	
in	the	page	cache

(2)	For	async	writes,	
• Return	to	app	immediately	
• Write	to	device	later

(3)	For	sync	writes,	
• Write	to	device	immediately	

through	block	layer


