
Linux	kernel	
Block	I/O	Layer



• Block	devices	(e.g.,	HDD,	SSD)	
– Allow	accessing	fixed-size	chunks	of	data	
– The	fixed	size	chucks	of	data	are	called	blocks	

– Block	is	the	smallest	logically	addressable	unit	defined	by	filesystems	(mostly	4KB)

• Linux	kernel	has	block	I/O	layer	for	accessing	block	devices	
– Manage	block	devices	
– Create/schedule	I/O	requests	
– Interface	with	two	layers	

– Upper	layer:	File	System	
– Lower	layer:	Device	Driver	(such	as	NVMe)

Overview:	Accessing	block	devices



Device	
Driver

I/O	
queue

<Device	driver>	
• Create	driver-specific	commands	(e.g.,	NVMe	cmnd)	
• Submit	to	the	I/O	queue	and	inform	the	device	(e.g.,	ring	doorbells)

Overview:	Accessing	block	devices

Filesystem [many]	caches

<Filesystem>	
• Inode	cache,	directory	cache,	buffer	cache,	page	cache	
• Identify	target	data	block	and	read/write	from/to	page	cache	
• Direct	I/O,	cache	miss	for	read,	sync	I/O	go	to	block	layer

Block	device

I/O	system	calls

App.
<Application>	
• Open	a	file	
• Read/write	data	from	the	file

User	space

Kernel	space

Hardware

Block Per-core	
blk-mq

<Block	I/O>	
• Identify	where	to	access,	where	to	copy,	I/O	size,	etc.	
• Create/schedule	I/O	requests



• inode	cache	and	directory	cache	
– Enabling	functionalities	discussed	in	file	systems	
– Faster	access	to	information	in	inode	and	directory	

– Separated	from	“data”	cache

• Page	cache	
– Combines	virtual	memory	and	file	data	
– Caches	recently	read	data	on	persistent	storage	at	the	granularity	of	pages	
– Has	a	notion	of	“file”

All	these	caches

• Buffer	cache	
– Interfaces	with	block	devices	(hardware)		
– Caches	recently	read	data	blocks	on	persistent	storage	
– Has	no	notion	of	“files”—just	blocks



Read	I/O	data	path:	Application

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

Call	syscall	functions	
on	an	opened	file



Read	I/O	data	path:	Virtual	Filesystem

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

kiocb

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

[Input]	
• fd:	file	descriptor	
• buf:	user	buffer	
• buffer	length:	1024B

(1)	Create	kiocb	that	includes:	
• file	instance	looked-up	by	fd	
• I/O	vector	to	copy	1024B	read-data	to	buf	
• pos:	where	to	read/write	in	the	file



Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

kiocb

(1)	Create	kiocb	that	includes:	
• file	instance	looked-up	by	fd	
• I/O	vector	to	copy	1024B	read-data	to	buf	
• pos:	where	to	read	(or	write)	in	the	file

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

(2)	Access	the	file’s	page	cache	via	kiocb

Page Page Page …

Read	I/O	data	path:	Virtual	Filesystem

pos

If	cache	is	hit,	copy	the	pos	page	to	buf	using	
kiocb’s	I/O	vector

[Input]	
• fd:	file	descriptor	
• buf:	user	buffer	
• buffer	length:	1024B

Page



Read	I/O	data	path:	Block	(init.	bio)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

[Input]	
• file	&	pos	
• Target	page	address

Create	bio	that	includes:	
• Data	block	of	the	device	to	access	
• I/O	vector	to	copy	the	data	block

0 1 … Page Page Page …PageI/O	
vector

[page	cache]

Target	page	address

data

(2)	The	data	block	will	be	DMAed	to	the	
pages	that	bio’s	I/O	vector	points	to

(1)	Find	the	data	block	to	read	
using	filesystem	info	(inode,	pos,	etc.)

(For	direct	I/O,	bio’s	I/O	vector	would	point	to	the	user	buffer	=>	next	slide)



Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

0 1 …

Page Page Page …Page

I/O	
vector

[buf]

Target	page	address

data

Direct	I/O:	page	cache	is	not	involved	
• In	general,	page	cache	has	a	single	

cache	policy	(such	as	LRU)	
• Applications	like	DB	might	want	to	

implement	their	own	cache	policy	
with	direct	I/O

Read	I/O	data	path:	Block	(init.	bio)



Read	I/O	data	path:	Block	(init.	request)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

request



• Where	is	the	request	going?	
– Which	device	
– But	devices	have	multiple	“queues”	

– Which	queue	
– Identified	by	a	“hardware	context”

• Where	should	the	request	response	be	directed?	
– Which	CPU	core	and	which	application	
– Identified	by	a	“software	context”

What	should	a	“request”	contain?

• A	request	identifier	
– tag



Read	I/O	data	path:	Block	(init.	request)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

request

Create	request	that	includes:	
(1)	bio	list	for	merging	
(2)	blk-mq	mapping	

• Per-core	sw	queue	context	(ctx)	
• hw	queue	context	(hctx)	

(3)	tag	(an	integer	variable)	for	tagging



Read	I/O	data	path:	Block	(merging)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

request

bio bio bio

bio	list	head
bio	list	tail

Merge	multiple	bios	into	a	single	request	
• When	they	are	contiguous	data	blocks	
• Can	reduce	number	of	requests



Read	I/O	data	path:	Block	(blk-mq	mapping	case	1)

Block

Device	
Driver

Block	device

I/O	system	calls

App.

ctx[0]

I/O	
queue[0]

User	space

Kernel	space

Hardware

hctx[0,0]

ctx[1]

I/O	
queue[1]

hctx[1,0]

ctx[2]

I/O	
queue[2]

hctx[2,0]

#I/O	queues	=	#cores	
(default	configuration)

request



Read	I/O	data	path:	Block	(blk-mq	mapping	case	2)

Block

Device	
Driver

Block	device

I/O	system	calls

App.

ctx[0]

I/O	
queue[0]

User	space

Kernel	space

Hardware

hctx[0,0]

I/O	
queue[3]

hctx[0,1]

#I/O	queues	=	#cores	x	2	

ctx[1]

I/O	
queue[1]

hctx[1,0]

I/O	
queue[4]

hctx[1,1]

ctx[2]

I/O	
queue[2]

hctx[2,0]

I/O	
queue[5]

hctx[2,1] In	this	example:	
• hctx[*,0]	for	read	I/O	
• hctx[*,1]	for	write	I/O

Current	Linux	kernel	
supports	three	hctx	types:	
• read/write/poll

request



Read	I/O	data	path:	Block	(scheduling)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

request

When	request	initialization	is	done,		
perform	I/O	scheduling	at	per-req	granularity	
• Linux	supports	Noop/deadline/BFQ/Kyber	
(Noop	skips	I/O	scheduling	step)	

• Existing	schedulers	were	mostly	designed	for	
HDD	(slow	devices)	

• For	NVMe	SSD	(fast	devices),	I/O	scheduling	
may	add	extra	latency,	so	Noop	is	chosen	in	
many	cases



Read	I/O	data	path:	Device	Driver	(NVMe)

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

char buf[1024]; 
ret = read(fd, buf, 1024); 
…

kiocb

bio

request

cmnd

Create	cmnd	that	includes:	
• request	instance	
• NVMe-specific	data	structures	
(command	header,	etc.)

Perform	NVMe	operations	(next	slide)	
• As	I/O	queues,	NVMe	defines	

submission	queue	(SQ)	and	
completion	queue	(CQ)	per	core



Read	I/O	data	path:	Device	Driver	(NVMe)

Submission 
Queue (SQ)

Completion 
Queue (CQ)

Host 
Memory

Host

NVMe Controller

Submission queue 
Tail Doorbell

Completion queue 
Head Doorbell

1. Queue 
cmnd

2. Ring 
Doorbell 

(New Tail)

3. Fetch/process 
cmnd

4. Queue 
Completion

5. 
Generate 
Interrupt

6. Process 
Completion

7. Ring 
Doorbell 

(New 
Head)



Read	I/O	data	path:	Response

Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

kiocb

bio

request (1)	From	the	completion	entry,	
• Extract	the	tag	
• Find	the	corresponding	request	

instance	from	the	tag	
• Call	block-layer	completion	callbacks

kioctx

(2)	For	sync	I/O,	
• Return	to	app

(3)	For	async	I/O,	
• Add	a	completion	event	in	

the	ring	buffer	(kioctx)	
• Signal	the	app	to	wake-up



Virtual	
Filesystem

Block

Device	
Driver

Block	device

I/O	system	calls

App.

page	cache

Per-core	
blk-mq

I/O	
queue

User	space

Kernel	space

Hardware

kiocb

char buf[1024]; 
ret = write(fd, buf, 1024); 
…

Page Page Page …

Write	I/O	path	(difference	from	Read)

pos

Page

(1)	Write	the	user	data	
in	the	page	cache

(2)	For	async	writes,	
• Return	to	app	immediately	
• Write	to	device	later

(3)	For	sync	writes,	
• Write	to	device	immediately	

through	block	layer


