
Storage stack: 

More on RAID



Announcements
Grading completed


All regrade requests completed (HW3 regrade requests due on 11/20)


HW4

Please submit the first 2 questions by 11/20 (File system and RAID)

Q3 can be submitted along with HW5, if you prefer


Prelim 2

In-class; open-* (same as Prelim1); infinite time

Everything up to today’s lecture (cumulative)

Those taking makeup exam should have received details over email


Preparation for Prelim2

Practice prelim 2 and solutions released

Sunday: review session at 1PM (will be recorded); zoom link on Ed

Many extra office hours to help you prepare for Prelim2



I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Translates OS abstractions and hw 
specific details of I/O devices

Control registers, bulk data transfer, 
OS notifications

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device

Recall: The Storage Stack



What have we discussed in 
the storage stack so far? [1]

Structure of the file system

Files and directories divided into “blocks”


Blocks are allocated on physical storage device

in a contiguous allocation, linked structure, or indexed structure


Explored different tradeoffs


Inodes store “pointers” to physical locations of individual blocks

Along with other file metadata


Different Inode structure for different block allocation mechanisms


Superblock stores the metadata for the file system 

e.g., where is inode table


Files, directories, blocks, inodes, superblocks—all stored on physical 
device


Can be indexed for improved performance



What have we discussed in 
the storage stack so far? [2]

What semantics/abstractions should file systems provide?

Files as a storage mechanism


Everything on previous slide


Consistent updates

Upon one or more writes, file system should be “consistent”

If data block written, it should be readable and not be garbage


Transactions (worst performance, lowest recovery overheads) 


Journaling (okay performance, okay recovery overheads)


Log-structured file system (best performance, worst recovery overheads)


What abstractions should the storage system provide?

One large, fast, reliable storage system: RAID



RAID
Redundant Array of Inexpensive* Disks

* In industry, “inexpensive” has been replaced by “independent”  :-)



High-level idea
Implement the abstraction of a faster, bigger and more reliable disk 
using a collection of slower, smaller, and more likely to fail disks


different configurations offer different tradeoffs


Key feature: transparency

The Power of Abstraction™

to the OS looks like a single, large, highly performant and highly reliable 
single disk


a linear array of blocks

mapping needed to get to actual disk

cost: one logical I/O may translate into multiple physical I/Os


In the box:

microcontroller, DRAM (to buffer blocks) [sometimes non-volatile memory, 
parity logic]



Failure Model
RAID adopts the strong, somewhat unrealistic Fail-Stop failure model 
(electronic failure, wear out, head damage)


component works correctly until it crashes, permanently

Storage device is either working: all blocks can be read and written


or has failed: it is permanently lost


failure of the component is immediately detected

RAID controller can immediately observe a disk has failed and accesses return error 
codes


In reality, storage devices can also suffer from isolated failures

Permanent: physical malfunction (wear out, scratches, contaminants)

Transient: data is corrupted, but new data can be successfully read from/
written



How to Evaluate a RAID
Capacity


what fraction of the sum of the storage of its constituent disks does the 
RAID make available?


Reliability

How many disk faults can a specific RAID configuration tolerate? 


Performance

Workload dependent



RAID-0: Striping 
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Stripe

Stripe

Stripe

Stripe

Spread blocks across disks using round robin

+ Excellent parallelism           
can read/write from multiple disks      

– Worst-case latency
 wait for largest latency across all ops



RAID-0: Striping

(Big Chunk Edition)
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+ improve sequential throughput        — decrease parallelism

Spread blocks across disks using round robin



RAID-0: Evaluation
Capacity


Excellent: N disks, each holding B blocks support the 
abstraction of a single disk with NxB blocks


Reliability

Poor: Striping reduces reliability


Any disk failure causes data loss


Performance

Workload dependent, of course

We’ll consider two workloads


Sequential: single disk transfers S MB/s 

Random: single disk transfer R MB/s

S >> R



RAID-0: Performance

Single-block read/write throughput

about the same as accessing a single disk


Latency

Read: T ms (latency of one I/O op to disk)

Write: T ms


Steady-state read/write throughput

Sequential: N x S MB/s

Random: N x R MB/s



RAID-1: Mirroring

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Each block is replicated twice

Read from any    Write to both



RAID-1: Evaluation
Capacity


 Poor: N disks of B blocks yield (N x B)/2 blocks


Reliability

Good: Can tolerate the loss (not corruption!) of any one disk


Performance


Fine for reads: can choose any disk


Poor for writes: every logical write requires writing to both 
disks 


suffers worst-case delay of the two writes



RAID-1: Performance
Steady-state throughput


Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes


Sequential Reads: N x S MB/s

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7
0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7



RAID-1: Performance
Steady-state throughput


Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes


Sequential Reads: N x S MB/s


Random Writes: N/2 x R MB/s

Each logical Write involves two physical Writes


Random Reads: N x R MB/s

Reads can be distributed across all disks


Latency for Reads and Writes: T ms

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7



RAID-4: Block Striped, 
with Parity

Data disks Parity disk
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RAID-4: Block Striped, 
with Parity

Data disks Parity disk
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Disk controller can identify faulty disk

single parity disk can detect and correct errors



RAID-4: Evaluation
Capacity


N disks of B blocks yield (N-1) x B  blocks


Reliability

Tolerates the failure of any one disk


Performance


Fine for sequential read/write accesses and random 
reads


Random writes are a problem!



RAID-4: Performance
Sequential Reads: (N-1) x S MB/s

Sequential Writes: (N-1) x S MB/s


compute & write parity block once for the full stripe 


Random Read: (N-1) x R MB/s

Random Writes: R/2 MB/s (N is gone! Yikes!)


need to read block from disk and parity block


Compute Pnew = (Bold XOR Bnew) XOR Pold


Write back Bnew and Pnew


Every write must go through parity disk, eliminating any chance 
of parallelism 


Every logical I/O requires two physical I/Os at parity disk: can at 
most achieve 1/2 of its random transfer rate (i.e. R/2) 


Latency:  Reads: T ms; Writes: 2T ms



RAID-5: Rotating Parity

(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19



RAID-5: Evaluation
Capacity & Reliability


As in Raid-4


Performance


Sequential read/write accesses as in RAID-4

(N-1) x S MB/s


Random Reads are slightly better


N x R MB/s (instead of (N-1) x R MB/s)


Random Writes much better than RAID-4: R/2 x N/2

as in RAID-4 writes involve two operations at every disk: each 
disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to N/2 
writes in parallel (each involving 2 disks)




