
Storage stack:

More on RAID

Announcements
Grading completed

All regrade requests completed (HW3 regrade requests due on 11/20)

HW4

Please submit the first 2 questions by 11/20 (File system and RAID)

Q3 can be submitted along with HW5, if you prefer

Prelim 2

In-class; open-* (same as Prelim1); infinite time

Everything up to today’s lecture (cumulative)

Those taking makeup exam should have received details over email

Preparation for Prelim2

Practice prelim 2 and solutions released

Sunday: review session at 1PM (will be recorded); zoom link on Ed

Many extra office hours to help you prepare for Prelim2

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

Recall: The Storage Stack

What have we discussed in
the storage stack so far? [1]

Structure of the file system

Files and directories divided into “blocks”

Blocks are allocated on physical storage device

in a contiguous allocation, linked structure, or indexed structure

Explored different tradeoffs

Inodes store “pointers” to physical locations of individual blocks

Along with other file metadata

Different Inode structure for different block allocation mechanisms

Superblock stores the metadata for the file system

e.g., where is inode table

Files, directories, blocks, inodes, superblocks—all stored on physical
device

Can be indexed for improved performance

What have we discussed in
the storage stack so far? [2]

What semantics/abstractions should file systems provide?

Files as a storage mechanism

Everything on previous slide

Consistent updates

Upon one or more writes, file system should be “consistent”

If data block written, it should be readable and not be garbage

Transactions (worst performance, lowest recovery overheads)

Journaling (okay performance, okay recovery overheads)

Log-structured file system (best performance, worst recovery overheads)

What abstractions should the storage system provide?

One large, fast, reliable storage system: RAID

RAID
Redundant Array of Inexpensive* Disks

* In industry, “inexpensive” has been replaced by “independent” :-)

High-level idea
Implement the abstraction of a faster, bigger and more reliable disk
using a collection of slower, smaller, and more likely to fail disks

different configurations offer different tradeoffs

Key feature: transparency

The Power of Abstraction™

to the OS looks like a single, large, highly performant and highly reliable
single disk

a linear array of blocks

mapping needed to get to actual disk

cost: one logical I/O may translate into multiple physical I/Os

In the box:

microcontroller, DRAM (to buffer blocks) [sometimes non-volatile memory,
parity logic]

Failure Model
RAID adopts the strong, somewhat unrealistic Fail-Stop failure model
(electronic failure, wear out, head damage)

component works correctly until it crashes, permanently

Storage device is either working: all blocks can be read and written

or has failed: it is permanently lost

failure of the component is immediately detected

RAID controller can immediately observe a disk has failed and accesses return error
codes

In reality, storage devices can also suffer from isolated failures

Permanent: physical malfunction (wear out, scratches, contaminants)

Transient: data is corrupted, but new data can be successfully read from/
written

How to Evaluate a RAID
Capacity

what fraction of the sum of the storage of its constituent disks does the
RAID make available?

Reliability

How many disk faults can a specific RAID configuration tolerate?

Performance

Workload dependent

RAID-0: Striping

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Stripe

Stripe

Stripe

Stripe

Spread blocks across disks using round robin

+ Excellent parallelism
can read/write from multiple disks

– Worst-case latency
 wait for largest latency across all ops

RAID-0: Striping

(Big Chunk Edition)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Stripe

Stripe

+ improve sequential throughput — decrease parallelism

Spread blocks across disks using round robin

RAID-0: Evaluation
Capacity

Excellent: N disks, each holding B blocks support the
abstraction of a single disk with NxB blocks

Reliability

Poor: Striping reduces reliability

Any disk failure causes data loss

Performance

Workload dependent, of course

We’ll consider two workloads

Sequential: single disk transfers S MB/s

Random: single disk transfer R MB/s

S >> R

RAID-0: Performance

Single-block read/write throughput

about the same as accessing a single disk

Latency

Read: T ms (latency of one I/O op to disk)

Write: T ms

Steady-state read/write throughput

Sequential: N x S MB/s

Random: N x R MB/s

RAID-1: Mirroring

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Each block is replicated twice

Read from any Write to both

RAID-1: Evaluation
Capacity

 Poor: N disks of B blocks yield (N x B)/2 blocks

Reliability

Good: Can tolerate the loss (not corruption!) of any one disk

Performance

Fine for reads: can choose any disk

Poor for writes: every logical write requires writing to both
disks

suffers worst-case delay of the two writes

RAID-1: Performance
Steady-state throughput

Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes

Sequential Reads: N x S MB/s

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7
0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

RAID-1: Performance
Steady-state throughput

Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes

Sequential Reads: N x S MB/s

Random Writes: N/2 x R MB/s

Each logical Write involves two physical Writes

Random Reads: N x R MB/s

Reads can be distributed across all disks

Latency for Reads and Writes: T ms

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7

RAID-4: Block Striped,
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1

1

1

0

00

00

1 0

1

1

0

01

10

1 0

1

1

0

00

01

1 1

1

1

0

11

00

0

0

1

0 0

0 1

1 0

RAID-4: Block Striped,
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1

1

1

0

00

00

1 0

1

1

0

01

10

1 0

1

1

0

00

01

1 1

1

1

0

11

00

0

0

1

0 0

0 1

1 0

Disk controller can identify faulty disk

single parity disk can detect and correct errors

RAID-4: Evaluation
Capacity

N disks of B blocks yield (N-1) x B blocks

Reliability

Tolerates the failure of any one disk

Performance

Fine for sequential read/write accesses and random
reads

Random writes are a problem!

RAID-4: Performance
Sequential Reads: (N-1) x S MB/s

Sequential Writes: (N-1) x S MB/s

compute & write parity block once for the full stripe

Random Read: (N-1) x R MB/s

Random Writes: R/2 MB/s (N is gone! Yikes!)

need to read block from disk and parity block

Compute Pnew = (Bold XOR Bnew) XOR Pold

Write back Bnew and Pnew

Every write must go through parity disk, eliminating any chance
of parallelism

Every logical I/O requires two physical I/Os at parity disk: can at
most achieve 1/2 of its random transfer rate (i.e. R/2)

Latency: Reads: T ms; Writes: 2T ms

RAID-5: Rotating Parity

(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19

RAID-5: Evaluation
Capacity & Reliability

As in Raid-4

Performance

Sequential read/write accesses as in RAID-4

(N-1) x S MB/s

Random Reads are slightly better

N x R MB/s (instead of (N-1) x R MB/s)

Random Writes much better than RAID-4: R/2 x N/2

as in RAID-4 writes involve two operations at every disk: each
disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to N/2
writes in parallel (each involving 2 disks)

