Storage stack:

Log-structured File System
RAID

Recall: The Storage Stack

@ I/O systems are accessed through a

series of layered abstractions Application
Eralr iy e
o Caches blocks recently read from disk Library
o Buffers recently written blocks ,
File System

o Single inferface to many devices,
allows data to be read/written in
fixed sized blocks

0 Translates OS abstractions and hw
specific details of I/O devices

o Control registers, bulk data transfer,

| Physical Device

Recall: Storing Files

@ Files can be allocated in different ways
o Contiguous allocation
> all bytes together, in order

o Linked Structure
» Each points to the next block

0 Indexed Structure

» Index block, pointing to many other blocks

Recall: The Consistent
Update Problem

® Several file systems operations update multiple
data structures

0 Create new file

» update inode bitmap and data bitmap
» write new inode

» add new file to directory file

@ Would like to atomically move FS from one
consistent state to another

Recall: Solution 1:
File System Checker

@ Ethos: If it happens, I'll do something about it

0 Let inconsistencies happen and fix them post facto

» during reboot

@ Classic example: fsck
0 Unix, 1986

@ Fixing inconsistencies post facto can be VERY slow

Recall: Solution 2: Ordered
Updates & Transactions

@ Group together actions so that they are
o Atomic: either all happen or none
o Consistent: maintain invariants

n Isolated: serializable (schedule in which transactions
occur is equivalent to fransactions executing
sequentially)

D Durable: once completed, effects are persistent

® Transaction can have two outcomes:
o Commit: transaction becomes durable

o Abort: transaction never happened

» may require appropriate rollback

Solution 3: Journaling
(write ahead logging)

@ Turns mulfiple disk updates into a single disk write

o “write ahead” a short note to a “log”, specifying
changes about to be made to the FS data structures

o if a crash occurs while updating FS data structures,
consult log to determine what to do

» no need to scan entire disk!

Data Jounaling:
an example

® We start with

inode bitmap : data bitmap ; i-nodes f data blocks

0]1]0]0]j0]0].: [0]0]0O]|OJ1]|O]: —-IVl-= - == — © —— —— — __DI -

® We want to a.dd a new block to the file
@ Three easy steps includes TxID and

blocks’ final addresses

o Write to the log 5 blocks: TxBegin | Ivz | Bv2 | D2 | TxEnd

» write each record to a block, so it is atomic
o Write the blocks for Iv2, Bv2, D2 to the FS proper [a.k.a checkpoint]
o Mark the transaction free in the journal
® What if we crash before the log is updated?
o if no commit, nothing made it into FS - ignore changes!
® What if we crash after the log is updated?

o replay changes in log back to disk!

Journaling and
Write Order

o ISSUing the 5 writes to the IOg TxBegin | Iv2 | B2 | D2 | TxEnd
sequentially is slow

0 Issue at once, and transform in a single sequential write!?

® Problem: disk can schedule writes out of order
o first write TxBegin, Iv2, B2, TxEnd

>
o then write D2

Disk loses power

@ Log contains: txBegin | Iv2 | B2 | 22 | TxEnd

o syntactically, transaction log looks fine, even with nonsense in
place of D2!

@ TxEnd must block until prior blocks are on disk

0 Transaction committed when TxXEnd on disk

Log Structured
File Systems

@ Instead of adding a log to the existing FS disk
layout, use all disk as a log

o buffer all updates (including metadata!) into an in-
memory data structure

o Periodically, write fo persistent storage in a long
sequential transfer

@ Never overwrite existing data
D always write data to “next” free locations

0 Sequential writes: much improved throughput

Log Structured
File Systems

@ But how does it work?
0 suppose we want to add a new block to a O-sized file
D not enough to write o log just the data block...

o ..we have to update the inode too!

@ LFS places both data block and inode in-memory

D1
@ Leverages write buffering to write a chunk of
updates all at once

- | inode

Log-structured File System | data

How do we quickly find inodes?

Finding inodes Iin LFS

@ Inode map: a table indicating where each inode is
on disk: Imap(i#) -> disk address of i

@ Keep it in memory, and periodically push it fo disk

® In case of failures, reconstruct

D e.g., by scanning data on disk

LFS vs UFS

- | inode
filel file2 .
i ol | directory
dirl dir2 e data

Unix File System

. inode map

Blocks written to
create two l-block files:

dirl/filel and dir2/file2
Log-structured File System in UFS and LFS

Recall: The Storage Stack

@ I/0O systems are accessed through a

series of layered abstractions Application
Eralr iy e
o Caches blocks recently read from disk Library
o Buffers recently written blocks ,
File System

o Single inferface to many devices,
allows data to be read/written in
fixed sized blocks

0 Translates OS abstractions and hw
specific details of I/O devices

o Control registers, bulk data transfer,

| Physical Device

RAID

Redundant Array of Inexpensive® Disks

* In industry, “inexpensive” has been replaced by “independent” :-)

High-level idea

@ Implement the abstraction of a faster, bigger and more reliable disk
using a collection of slower, smaller, and more likely to fail disks

n different configurations offer different tradeoffs

@ Key feature: transparency
o The Power of Abstraction™

o to the OS looks like a single, large, highly performant and highly reliable
single disk
— a linear array of blocks
- mapping needed to get to actual disk

— cost: one logical I/0 may translate into multiple physical 1/Os

@ In the box:

o microcontroller, DRAM (to buffer blocks) [sometimes non-volatile memory,
parity logic]

Failure Model

@ RAID adopts the strong, somewhat unrealistic Fail-Stop failure model
(electronic failure, wear out, head damage)

o component works correctly until it crashes, permanently
» Storage device is either working: all blocks can be read and written

» or has failed: it is permanently lost

o failure of the component is immediately detected

» RAID controller can immediately observe a disk has failed and accesses return error
codes

@ In reality, storage devices can also suffer from isolated failures
o Permanent: physical malfunction (wear out, scratches, contaminants)

o Transient: data is corrupted, but new data can be successfully read from/
written

How to Evaluate a RAID

@ Capacity

o what fraction of the sum of the storage of its constituent disks does the
RAID make available?

o Reliability

o How many disk faults can a specific RAID configuration tolerate?

@ Performance
o Workload dependent

RAID-0: Striping

Spread blocks across disks using round robin

Stripe O 1

Stripe 4 5
Stripe 8 9
Stripe 12 13

+ Excellent parallelism

» can read/write from multiple disks

2 3
6 I
10 11
14 15

- Worst-case latency

» wait for largest latency across all ops

RAID-0: Striping
(Big Chunk Edition)

Spread blocks across disks using round robin

o ¢ 2 o ¢ 2 o 2

-“‘ e « — _ - G &S ==

.v\/_—_ ‘\/I- ‘\/I- ‘\/I-
Stripe O 2 4 6
| 3 5 7
Stripe 8 10 12 14
9 11 13 15

+ improve sequential throughput — decrease parallelism

RAID-0: Evaluation

@ Capacity
o Excellent: N disks, each holding B blocks support the
abstraction of a single disk with NxB blocks
@ Reliability
o Poor: Striping reduces reliability

> Any disk failure causes data loss

@ Performance
0 Workload dependent, of course

o We'll consider two workloads
» Sequential: single disk transfers S MB/s
> Random: single disk transfer R MB/s
» S> R

RAID-0: Performance

@ Single-block read/write throughput

o about the same as accessing a single disk

@ Latency
o Read: T ms (latency of one I/0 op to disk)

o Write: T ms

@ Steady-state read/write throughput

o Sequential: N x S MB/s
o Random: N x R MB/s

<L -_.-‘
v\\/_— \—@,—
0 1
2 3
4 5
6 4

RAID-1: Mirroring

Each block is replicated twice

Read from any Write to both

RAID-1: Evaluation

@ Capacity
o Poor: N disks of B blocks vyield (N x B)/2 blocks

@ Reliability

D0 Good: Can folerate the loss (not corruption!) of any one disk
@ Performance
o Fine for reads: can choose any disk

n Poor for writes: every logical write requires writing to both
disks

» suffers worst-case delay of the two writes

RAID-1: Performance

@ Steady-state throughput
o Sequential Writes: N/2 x S MB/s

» Each logical Write involves two physical Writes

o Sequential Reads: N x S MB/s

Suppose we want to read

0 0
2 2 OI ll 2/ 3/ 41 5/ 617
A A
6 6

N~ 0o w o~
N~ o o w o~

RAID-1: Performance

@ Steady-state throughput
o Sequential Writes: N/2 x S MB/s

» Each logical Write involves two physical Writes

o Sequential Reads: N x S MB/s

Suppose we want to read

0, 1, 2, 3,54 5.8 ¥

o Random Writes: N/2 x R MB/s

» Each logical Write involves two physical Writes
o Random Reads: N x R MB/s

» Reads can be distributed across all disks

@ Latency for Reads and Writes: T ms

RAID-4: Block Striped,
with Parity

Data disks

Parity disk

Stripe
Stripe
Stripe

Stripe

10
14

11
15

RAID-4: Block Striped,
with Parity

Data disks Parity disk

Stripe QO 1 p 3 PO
Stripe 4 5 6 V4 P1
Stripe 8 9 10 11 P2
Stripe 12 13 14 15 P3
RS e 0 L 0gre B 00 P N S o) O 00
(B8 b ST | 15 80 O 1,0 | Fatel Al 0 el |
00 |1 0|1 |1 e S O | 0[O0 |1 B B R

Disk controller can identify faulty disk
D single parity disk can detect and correct errors

RAID-4: Evaluation

@ Capacity
o N disks of B blocks yield (N-1) x B blocks

@ Reliability

o Tolerates the failure of any one disk

® Performance

o Fine for sequential read/write accesses and random
reads

0 Random writes are a problem!

RAID-4: Performance

o Sequential Reads: (N-1) x S MB/s
o Sequential Writes: (N-1) x S MB/s

» compute & write parity block once for the full stripe
o Random Read: (N-1) x R MB/s

o Random Writes: R/2 MB/s (N is gone! Yikes!)
» need to read block from disk and parity block
» Compute Pnew = (Bod XOR Bjew) XOR Pog
> Write back Bnew and Prew

» Every write must go through parity disk, eliminating any chance
of parallelism

> Every logical I/O requires two physical I/Os at parity disk: can at
most achieve 1/2 of its random transfer rate (i.e. R/2)

@ Latency: Reads: T ms; Writes: 2T ms

RAID-5: Rotating Parity
(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 PO
5 6 7 P1 4
10 11 P2 8 9
15 P3 12 13 14

RAID-5: Evaluation

@ Capacity & Reliability
o As in Raid-4

@ Performance

o Sequential read/write accesses as in RAID-4
» (N-1) x S MB/s

0 Random Reads are slightly better
> N x R MB/s (instead of (N-1) x R MB/s)

o Random Writes much better than RAID-4: R/2 x N/2

» as in RAID-4 writes involve two operations at every disk: each
disk can achieve at most R/2

> but, without a bottleneck parity disk, we can issue up to N/2
writes in parallel (each involving 2 disks)

