
Storage stack: 

Log-structured File System


RAID



I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Translates OS abstractions and hw 
specific details of I/O devices

Control registers, bulk data transfer, 
OS notifications
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File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device

Recall: The Storage Stack



Recall: Storing Files

Files can be allocated in different ways

Contiguous allocation


all bytes together, in order

Linked Structure


Each points to the next block

Indexed Structure


Index block, pointing to many other blocks



Recall: The Consistent 
Update Problem

Several file systems operations update multiple 
data structures


Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file


Would like to atomically move FS from one 
consistent state to another



Recall: Solution 1: 

File System Checker
Ethos: If it happens, I’ll do something about it


 Let inconsistencies happen and fix them post facto

during reboot


Classic example: fsck

Unix, 1986


Fixing inconsistencies post facto can be VERY slow



Recall: Solution 2: Ordered 
Updates & Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions 
occur is equivalent to transactions executing 
sequentially)

Durable: once completed, effects are persistent


Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened


may require appropriate rollback



Questions?



Solution 3: Journaling  
(write ahead logging)
Turns multiple disk updates into a single disk write


“write ahead” a short note to a “log”, specifying 
changes about to be made to the FS data structures

if a crash occurs while updating FS data structures, 
consult log to determine what to do


no need to scan entire disk!



Data Jounaling: 

an example

We start with


We want to add a new block to the file

Three easy steps


Write to the log 5 blocks:

write each record to a block, so it is atomic


Write the blocks for Iv2, Bv2, D2 to the FS proper [a.k.a checkpoint]

Mark the transaction free in the journal


What if we crash before the log is updated?

if no commit, nothing made it into FS - ignore changes!


What if we crash after the log is updated?

replay changes in log back to disk!

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | Bv2 | D2 | TxEnd

includes TxID and 
blocks’ final addresses



Journaling and  
Write Order

Issuing the 5 writes to the log            
sequentially is slow 


Issue at once, and transform in a single sequential write!?

Problem: disk can schedule writes out of order


first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in 
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

TxEnd must block until prior blocks are on disk

Transaction committed when TxEnd on disk



Log Structured  
File Systems

Instead of adding a log to the existing FS disk 
layout, use all disk as a log


buffer all updates (including metadata!) into an in-
memory data structure

Periodically, write to persistent storage in a long 
sequential transfer


Never overwrite existing data

always write data to “next” free locations

Sequential writes: much improved throughput



Log Structured  
File Systems

But how does it work?

suppose we want to add a new block to a 0-sized file

not enough to write to log just the data block…

…we have to update the inode too!


LFS places both data block and inode in-memory

D I
b[0]:A0

Leverages write buffering to write a chunk of 
updates all at once

A0 A1



LFS
inode

directory

data

Log

Log-structured File System

How do we quickly find inodes?

dir1 dir2

file1 file2



Finding inodes in LFS

Inode map: a table indicating where each inode is 
on disk:  Imap(i#) -> disk address of i#

Keep it in memory, and periodically push it to disk

In case of failures, reconstruct 


e.g., by scanning data on disk



LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to 
create two 1-block files: 
dir1/file1 and dir2/file2 
in UFS and LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2



I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Translates OS abstractions and hw 
specific details of I/O devices

Control registers, bulk data transfer, 
OS notifications

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device

Recall: The Storage Stack



RAID
Redundant Array of Inexpensive* Disks

* In industry, “inexpensive” has been replaced by “independent”  :-)



High-level idea
Implement the abstraction of a faster, bigger and more reliable disk 
using a collection of slower, smaller, and more likely to fail disks


different configurations offer different tradeoffs


Key feature: transparency

The Power of Abstraction™

to the OS looks like a single, large, highly performant and highly reliable 
single disk


a linear array of blocks

mapping needed to get to actual disk

cost: one logical I/O may translate into multiple physical I/Os


In the box:

microcontroller, DRAM (to buffer blocks) [sometimes non-volatile memory, 
parity logic]



Failure Model
RAID adopts the strong, somewhat unrealistic Fail-Stop failure model 
(electronic failure, wear out, head damage)


component works correctly until it crashes, permanently

Storage device is either working: all blocks can be read and written

or has failed: it is permanently lost


failure of the component is immediately detected

RAID controller can immediately observe a disk has failed and accesses return error 
codes


In reality, storage devices can also suffer from isolated failures

Permanent: physical malfunction (wear out, scratches, contaminants)

Transient: data is corrupted, but new data can be successfully read from/
written



How to Evaluate a RAID
Capacity


what fraction of the sum of the storage of its constituent disks does the 
RAID make available?


Reliability

How many disk faults can a specific RAID configuration tolerate? 


Performance

Workload dependent



RAID-0: Striping 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Stripe

Stripe

Stripe

Stripe

Spread blocks across disks using round robin

+ Excellent parallelism           
can read/write from multiple disks      

– Worst-case latency
 wait for largest latency across all ops



RAID-0: Striping

(Big Chunk Edition)

0 
1

2 
3

4 
5

6 
7

8 
9

10 
11

12 
13

14 
15

Stripe

Stripe

+ improve sequential throughput        — decrease parallelism

Spread blocks across disks using round robin



RAID-0: Evaluation
Capacity


Excellent: N disks, each holding B blocks support the 
abstraction of a single disk with NxB blocks


Reliability

Poor: Striping reduces reliability


Any disk failure causes data loss


Performance

Workload dependent, of course

We’ll consider two workloads


Sequential: single disk transfers S MB/s 

Random: single disk transfer R MB/s

S >> R



RAID-0: Performance

Single-block read/write throughput

about the same as accessing a single disk


Latency

Read: T ms (latency of one I/O op to disk)

Write: T ms


Steady-state read/write throughput

Sequential: N x S MB/s

Random: N x R MB/s



RAID-1: Mirroring

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Each block is replicated twice

Read from any    Write to both



RAID-1: Evaluation
Capacity


 Poor: N disks of B blocks yield (N x B)/2 blocks

Reliability


Good: Can tolerate the loss (not corruption!) of any one disk

Performance


Fine for reads: can choose any disk

Poor for writes: every logical write requires writing to both 
disks 


suffers worst-case delay of the two writes



RAID-1: Performance
Steady-state throughput


Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes


Sequential Reads: N x S MB/s

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7
0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7



RAID-1: Performance
Steady-state throughput


Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes


Sequential Reads: N x S MB/s


Random Writes: N/2 x R MB/s

Each logical Write involves two physical Writes


Random Reads: N x R MB/s

Reads can be distributed across all disks


Latency for Reads and Writes: T ms

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7



RAID-4: Block Striped, 
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1

1

1

0

00

00

1 0

1

1

0

01

10

1 0

1

1

0

00

01

1 1

1

1

0

11

00

0

0

1

0 0

0 1

1 0



RAID-4: Block Striped, 
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1

1

1

0

00

00

1 0

1

1

0

01

10

1 0

1

1

0

00

01

1 1

1

1

0

11

00

0

0

1

0 0

0 1

1 0

Disk controller can identify faulty disk

single parity disk can detect and correct errors



RAID-4: Evaluation
Capacity


N disks of B blocks yield (N-1) x B  blocks

Reliability


Tolerates the failure of any one disk

Performance


Fine for sequential read/write accesses and random 
reads

Random writes are a problem!



RAID-4: Performance
Sequential Reads: (N-1) x S MB/s

Sequential Writes: (N-1) x S MB/s


compute & write parity block once for the full stripe 

Random Read: (N-1) x R MB/s

Random Writes: R/2 MB/s (N is gone! Yikes!)


need to read block from disk and parity block

Compute Pnew = (Bold XOR Bnew) XOR Pold


Write back Bnew and Pnew

Every write must go through parity disk, eliminating any chance 
of parallelism 

Every logical I/O requires two physical I/Os at parity disk: can at 
most achieve 1/2 of its random transfer rate (i.e. R/2) 


Latency:  Reads: T ms; Writes: 2T ms



RAID-5: Rotating Parity

(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19



RAID-5: Evaluation
Capacity & Reliability


As in Raid-4

Performance


Sequential read/write accesses as in RAID-4

(N-1) x S MB/s


Random Reads are slightly better

N x R MB/s (instead of (N-1) x R MB/s)


Random Writes much better than RAID-4: R/2 x N/2

as in RAID-4 writes involve two operations at every disk: each 
disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to N/2 
writes in parallel (each involving 2 disks)




