
Storage stack:

Log-structured File System

RAID

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

Recall: The Storage Stack

Recall: Storing Files

Files can be allocated in different ways

Contiguous allocation

all bytes together, in order

Linked Structure

Each points to the next block

Indexed Structure

Index block, pointing to many other blocks

Recall: The Consistent
Update Problem

Several file systems operations update multiple
data structures

Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file

Would like to atomically move FS from one
consistent state to another

Recall: Solution 1:

File System Checker
Ethos: If it happens, I’ll do something about it

 Let inconsistencies happen and fix them post facto

during reboot

Classic example: fsck

Unix, 1986

Fixing inconsistencies post facto can be VERY slow

Recall: Solution 2: Ordered
Updates & Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions
occur is equivalent to transactions executing
sequentially)

Durable: once completed, effects are persistent

Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened

may require appropriate rollback

Questions?

Solution 3: Journaling
(write ahead logging)
Turns multiple disk updates into a single disk write

“write ahead” a short note to a “log”, specifying
changes about to be made to the FS data structures

if a crash occurs while updating FS data structures,
consult log to determine what to do

no need to scan entire disk!

Data Jounaling:

an example

We start with

We want to add a new block to the file

Three easy steps

Write to the log 5 blocks:

write each record to a block, so it is atomic

Write the blocks for Iv2, Bv2, D2 to the FS proper [a.k.a checkpoint]

Mark the transaction free in the journal

What if we crash before the log is updated?

if no commit, nothing made it into FS - ignore changes!

What if we crash after the log is updated?

replay changes in log back to disk!

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | Bv2 | D2 | TxEnd

includes TxID and
blocks’ final addresses

Journaling and
Write Order

Issuing the 5 writes to the log
sequentially is slow

Issue at once, and transform in a single sequential write!?

Problem: disk can schedule writes out of order

first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

TxEnd must block until prior blocks are on disk

Transaction committed when TxEnd on disk

Log Structured
File Systems

Instead of adding a log to the existing FS disk
layout, use all disk as a log

buffer all updates (including metadata!) into an in-
memory data structure

Periodically, write to persistent storage in a long
sequential transfer

Never overwrite existing data

always write data to “next” free locations

Sequential writes: much improved throughput

Log Structured
File Systems

But how does it work?

suppose we want to add a new block to a 0-sized file

not enough to write to log just the data block…

…we have to update the inode too!

LFS places both data block and inode in-memory

D I
b[0]:A0

Leverages write buffering to write a chunk of
updates all at once

A0 A1

LFS
inode

directory

data

Log

Log-structured File System

How do we quickly find inodes?

dir1 dir2

file1 file2

Finding inodes in LFS

Inode map: a table indicating where each inode is
on disk: Imap(i#) -> disk address of i#

Keep it in memory, and periodically push it to disk

In case of failures, reconstruct

e.g., by scanning data on disk

LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to
create two 1-block files:
dir1/file1 and dir2/file2
in UFS and LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

Recall: The Storage Stack

RAID
Redundant Array of Inexpensive* Disks

* In industry, “inexpensive” has been replaced by “independent” :-)

High-level idea
Implement the abstraction of a faster, bigger and more reliable disk
using a collection of slower, smaller, and more likely to fail disks

different configurations offer different tradeoffs

Key feature: transparency

The Power of Abstraction™

to the OS looks like a single, large, highly performant and highly reliable
single disk

a linear array of blocks

mapping needed to get to actual disk

cost: one logical I/O may translate into multiple physical I/Os

In the box:

microcontroller, DRAM (to buffer blocks) [sometimes non-volatile memory,
parity logic]

Failure Model
RAID adopts the strong, somewhat unrealistic Fail-Stop failure model
(electronic failure, wear out, head damage)

component works correctly until it crashes, permanently

Storage device is either working: all blocks can be read and written

or has failed: it is permanently lost

failure of the component is immediately detected

RAID controller can immediately observe a disk has failed and accesses return error
codes

In reality, storage devices can also suffer from isolated failures

Permanent: physical malfunction (wear out, scratches, contaminants)

Transient: data is corrupted, but new data can be successfully read from/
written

How to Evaluate a RAID
Capacity

what fraction of the sum of the storage of its constituent disks does the
RAID make available?

Reliability

How many disk faults can a specific RAID configuration tolerate?

Performance

Workload dependent

RAID-0: Striping

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Stripe

Stripe

Stripe

Stripe

Spread blocks across disks using round robin

+ Excellent parallelism
can read/write from multiple disks

– Worst-case latency
 wait for largest latency across all ops

RAID-0: Striping

(Big Chunk Edition)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Stripe

Stripe

+ improve sequential throughput — decrease parallelism

Spread blocks across disks using round robin

RAID-0: Evaluation
Capacity

Excellent: N disks, each holding B blocks support the
abstraction of a single disk with NxB blocks

Reliability

Poor: Striping reduces reliability

Any disk failure causes data loss

Performance

Workload dependent, of course

We’ll consider two workloads

Sequential: single disk transfers S MB/s

Random: single disk transfer R MB/s

S >> R

RAID-0: Performance

Single-block read/write throughput

about the same as accessing a single disk

Latency

Read: T ms (latency of one I/O op to disk)

Write: T ms

Steady-state read/write throughput

Sequential: N x S MB/s

Random: N x R MB/s

RAID-1: Mirroring

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Each block is replicated twice

Read from any Write to both

RAID-1: Evaluation
Capacity

 Poor: N disks of B blocks yield (N x B)/2 blocks

Reliability

Good: Can tolerate the loss (not corruption!) of any one disk

Performance

Fine for reads: can choose any disk

Poor for writes: every logical write requires writing to both
disks

suffers worst-case delay of the two writes

RAID-1: Performance
Steady-state throughput

Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes

Sequential Reads: N x S MB/s

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7
0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

RAID-1: Performance
Steady-state throughput

Sequential Writes: N/2 x S MB/s

Each logical Write involves two physical Writes

Sequential Reads: N x S MB/s

Random Writes: N/2 x R MB/s

Each logical Write involves two physical Writes

Random Reads: N x R MB/s

Reads can be distributed across all disks

Latency for Reads and Writes: T ms

0 0 1 1

2 2 3 3

4 4 5 5

6 6 7 7

Suppose we want to read

0, 1, 2, 3, 4, 5, 6, 7

RAID-4: Block Striped,
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1

1

1

0

00

00

1 0

1

1

0

01

10

1 0

1

1

0

00

01

1 1

1

1

0

11

00

0

0

1

0 0

0 1

1 0

RAID-4: Block Striped,
with Parity

Data disks Parity disk

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

Stripe

Stripe

Stripe

Stripe

1 1

1

1

0

00

00

1 0

1

1

0

01

10

1 0

1

1

0

00

01

1 1

1

1

0

11

00

0

0

1

0 0

0 1

1 0

Disk controller can identify faulty disk

single parity disk can detect and correct errors

RAID-4: Evaluation
Capacity

N disks of B blocks yield (N-1) x B blocks

Reliability

Tolerates the failure of any one disk

Performance

Fine for sequential read/write accesses and random
reads

Random writes are a problem!

RAID-4: Performance
Sequential Reads: (N-1) x S MB/s

Sequential Writes: (N-1) x S MB/s

compute & write parity block once for the full stripe

Random Read: (N-1) x R MB/s

Random Writes: R/2 MB/s (N is gone! Yikes!)

need to read block from disk and parity block

Compute Pnew = (Bold XOR Bnew) XOR Pold

Write back Bnew and Pnew

Every write must go through parity disk, eliminating any chance
of parallelism

Every logical I/O requires two physical I/Os at parity disk: can at
most achieve 1/2 of its random transfer rate (i.e. R/2)

Latency: Reads: T ms; Writes: 2T ms

RAID-5: Rotating Parity

(avoids the bottleneck)

Parity and Data distributed across all disks

0 1 2 3 P0

5 6 7 P1 4

10 11 P2 8 9

15 P3 12 13 14

P4 16 17 18 19

RAID-5: Evaluation
Capacity & Reliability

As in Raid-4

Performance

Sequential read/write accesses as in RAID-4

(N-1) x S MB/s

Random Reads are slightly better

N x R MB/s (instead of (N-1) x R MB/s)

Random Writes much better than RAID-4: R/2 x N/2

as in RAID-4 writes involve two operations at every disk: each
disk can achieve at most R/2

but, without a bottleneck parity disk, we can issue up to N/2
writes in parallel (each involving 2 disks)

