Storage stack:
File Systems:
Storing Files

Recall: The Storage Stack

@ I/O systems are accessed through a

series of layered abstractions Application
Eralr iy e
o Caches blocks recently read from disk Library
o Buffers recently written blocks ,
File System

o Single inferface to many devices,
allows data to be read/written in
fixed sized blocks

0 Translates OS abstractions and hw
specific details of I/O devices

o Control registers, bulk data transfer,

| Physical Device

Recall: Storing Files

@ Files can be allocated in different ways
o Contiguous allocation
> all bytes together, in order

o Linked Structure
» Each points to the next block

0 Indexed Structure

» Index block, pointing to many other blocks

® Which is best?

o For sequential access? Random access?

D0 Large files? Small files? Mixed?

Recall: File structure

® Each file is a fixed, asymmetric tree, with fixed
size data blocks (e.g. 4KB) as its leaves

@ The root of the tree is the files inode, containing
n metadata (more about it later)

0 a set of 15 pointers
» first 12 point fo data blocks
» last three point to intermediate blocks, themselves

containing pointers...

— #13: pointer to a block containing pointers to data blocks
— #14: double indirect pointer
— #15: triple indirect pointer (!)

Recall: Multilevel index

Inode Array

@ at known location
on disk

@ file number =
inode number =
index in the array

Super
block

4 Bytes entries

I-node

indirect block

contains pointers to data blocks

. File
Metadata

double indirect block
contains pointers to indirect blocks

. »,‘, g o
R R o O
O S

triple indirect block

contains pointers to double indirect blocks

7

Data
blocks
;i |)
;"
e 1
— ‘ \
4]

12 x
4KB =
48KB

}IK X 4KB
= 4MB

IK x 1k x
> 4KB =
4GB

IK X
1k x
} 1k x
4KB =
4TB

Crash Consistency

Caching and Consistency

® File systems maintain many data structures
o Bitmap of free blocks and inodes
o Directories

S gYo Yo [=X3

o Data blocks

@ Data structures cached for performance
o works great for read operations...

o ..but what about writes?

Caching and consistency

® File systems maintain many data structures
o Bitmap of free blocks and inodes
o Directories

S gYo Yo [=X3

o Data blocks

@ Data structures cached for performance
o works great for read operations...

o ..but what about writes?

& Write-back caches

o delay writes: higher performance at the cost of potential inconsistencies

@ Write-through caches

o write synchronously but poor performance (fsync)

» do we get consistency at least?

Example: a tiny ext2

® 6 blocks, 6 inodes

inode bitmap ; data bitmap : i-nodes : data blocks
0]1]0]0]0]|0].: [0f[0]O|OJ1]|O]: —=IVl== == == —= ! —— = —— __DI --
@ Suppose we append a \
data block to the file E
owner: rachit
permissions: read-only
0 add new data block D2 iz {
pointer: 4
pointer: null
pointer: null
pointer: null

W o

Example: a tiny ext2

® 6 blocks, 6 inodes

inode bitmap ; data bitmap : i-nodes : data blocks
o|i1|ofojojo]: [o]o]o]o]1fo]: --Ivl--------§ L e DI D2
@ Suppose we append a \
data block to the file C
owner: rachit
ermissions: read-only
0 add new data block D2 i 1
pointer: 4
0 updafe inode pointer: null
pointer: null
pointer: null

W o

Example: a tiny ext2

® 6 blocks, 6 inodes

inode bitmap ; data bitmap : i-nodes : data blocks
o|i1|ofojojo]: [o]o]o]o]1fo]: --Iv2--------§ s DI D2
@ Suppose we append a \
data block to the file £
owner: rachit
ermissions: read-only
0 add new data block D2 b :
pointer: 4
D update inode poimighs =
pointer: null
pointer: null

0 update data bitmap o .

Example: a tiny ext2

® 6 blocks, 6 inodes

inode bitmap ; data bitmap : i-nodes : data blocks
ofi1|o]ojojo]: [ofofo]o]1]1]: --Iv2--------§ Lo e DI D2
@ Suppose we append a \
data block to the file .
owner: rachit
rmissions: read-onl
o add new data block D2 W
pointer: 4
D update inode poimighs =
pointer: null
: inter: i
D0 update data bitmap @il e .

What if a crash or power outage occurs between writes?

If Only a
Single Write...

@ Just the data block (D2) is written to disk

o Data is written, but no way to get to it - in fact, D2 still
appears as a free block

o Write is lost, but FS (meta)data structures are consistent

@ Just the updated inode (Iv2) is written to disk

o If we follow the pointfer, we read garbage

o File system inconsistency: data bitmap says block is free,
while inode says it is used. Must be fixed

@ Just the updated bitmap is written fo disk

o File system inconsistency: data bitmap says data block is used,
but no inode points to it. The block will never be used. Must
be fixed

If Two Writes...

@ Inode and data bitmap updates succeed
0 Good news: file system is consistent!

0 Bad news: reading new block returns garbage

® Inode and data block updates succeed

o File system inconsistency. Must be fixed

@ Data bitmap and data block succeed
0 File system inconsistency

0 No idea which file data block belongs to!

The Consistent Update
Problem

® Several file systems operations update multiple
data structures

0 Create new file

» update inode bitmap and data bitmap
» write new inode

» add new file to directory file

@ Would like to atomically move FS from one
consistent state to another

Solution 1:
File System Checker

@ Ethos: If it happens, I'll do something about it

0 Let inconsistencies happen and fix them post facto

» during reboot

@ Classic example: fsck
0 Unix, 1986

@ Fixing inconsistencies post facto can be VERY slow

Solution 2:
Ordered Updates

@ Three rules towards a (quickly) recoverable FS:

0 Never reuse a resource before nullifying all pointers
to it (e.g., nullify an i-node pointer to a data block before reallocating that block to another i-node)

0 Never point to a structure before it has been
iniﬂalized (e.g., must initialize i-node before a directory entry references it)

0 Never clear last pointer to live resource before setting

a new one (e.g., when renaming a file, do not remove old name for an i-node until after
new name has been written)

@ How?

o A principled approach: Transactions

A principled approach:
Transactions

@ Group together actions so that they are
o Atomic: either all happen or none
o Consistent: maintain invariants

n Isolated: serializable (schedule in which transactions
occur is equivalent to fransactions executing
sequentially)

D Durable: once completed, effects are persistent

® Transaction can have two outcomes:
o Commit: transaction becomes durable

o Abort: transaction never happened

» may require appropriate rollback

Solution 3: Journaling
(write ahead logging)

@ Turns multiple disk updates info a single disk write

o “write ahead” a short note to a “log”, specifying
changes about to be made to the FS data structures

o if a crash occurs while updating FS data structures,
consult log to determine what to do

» no need to scan entire disk!

Data Jounaling:
an example

® We start with

inode bitmap : data bitmap ; i-nodes f data blocks

0]1]0]0]j0]0].: [0]0]0O]|OJ1]|O]: —-IVl-= - == — © —— —— — __DI -

@ We want to a.dd a new block to the file
% | Three easy S'I'eps includes TxID and

blocks’ final addresses

o Write to the log 5 blocks: TxBegin | Ivz | Bv2 | D2 | TxEnd

» write each record to a block, so it is atomic
o Write the blocks for Iv2, Bv2, D2 to the FS proper [a.k.a checkpoint]
o Mark the transaction free in the journal
@ What if we crash before the log is updated?
o if no commit, nothing made it into FS - ignore changes!
@ What if we crash after the log is updated?

o replay changes in log back to disk!

Journaling and
Write Order

@ Issuing the 5 writes to the log 1xBegin | v2 |82 | D2 | TxEnd
sequentially is slow

0 Issue at once, and transform in a single sequential write!?

® Problem: disk can schedule writes out of order
o first write TxBegin, Iv2, B2, TxEnd

>
o then write D2

Disk loses power

@ Log contains: TxBegin | Iv2 | B2 | 22 | TxEnd

o syntactically, transaction log looks fine, even with nonsense in
place of D2!

@ TxEnd must block until prior blocks are on disk

0 Transaction committed when TxXEnd on disk

Log Structured
File Systems

@ Instead of adding a log to the existing FS disk
layout, use all disk as a log

o buffer all updates (including metadata!) into an in-
memory data structure

o Periodically, write fo persistent storage in a long
sequential transfer

@ Never overwrite existing data
D always write data to “next” free locations

0 Sequential writes: much improved throughput

Log Structured
File Systems

@ But how does it work?
0 suppose we want to add a new block to a O-sized file
D not enough to write o log just the data block...

o ..we have to update the inode too!

® LFS places both data block and inode in-memory

D1
@ Leverages write buffering to write a chunk of
updates all at once

Finding i-nodes

@ in UFS, just index info inode array

Super Block | Inodes | Data blocks

/ \ 512 bytes/block

Inodes ! Data blocks 128 bytes/inode

' bl b2 b3 b4 b5 b6 b7 b8 b9 bl0 * bll ..
O 4 8 12 16 20 24 28 32 36

1 5.:9 13 1@ 2] 25 29 33 37 To find address inode 11:
A 29 26 addr(bl) + #inode x
Rl A size(inode)

3 7 01°15 49 &8 27 31 35 39

@ FFS is the same, with i-nodes divided among
block groups and stored at known locations

@ But in LFS i-nodes are scattered everywhere on disk!

Finding inodes Iin LFS

@ Inode map: a table indicating where each inode is
on disk: Imap(i#) -> disk address of i

@ Keep it in memory, and periodically push it fo disk

® In case of failures, reconstruct

D e.g., by scanning data on disk

LFS vs UFS

- | inode
filel file2 .
i ol | directory
dirl dir2 e data

Unix File System

. inode map

Blocks written to
create two l-block files:

dirl/filel and dir2/file2
Log-structured File System in UFS and LFS

D

d

d

Garbage collection

As old blocks of files are replaced by new ones, data in log become
fragmented: live and dead.

Cleaning used to produce contiguous space on which fo write

o compact M fragmented blocks into N new blocks, newly written to the log
o free old M blocks

Cleaning mechanism:

o How can LFS ftell which blocks are live and which dead?

Cleaning policy
o How often should the cleaner run?

o How should the cleaner pick blocks?

No one-size-fits-all solution. Different solutions, different tradeoffs

0 See the discussion for SSD log-structured storage for examples, and tradeoffs

Recall: The Storage Stack

@ I/0O systems are accessed through a

series of layered abstractions Application
Eralr iy e
o Caches blocks recently read from disk Library
o Buffers recently written blocks ,
File System

o Single inferface to many devices,
allows data to be read/written in
fixed sized blocks

0 Translates OS abstractions and hw
specific details of I/O devices

o Control registers, bulk data transfer,

| Physical Device

