
Storage stack:

File Systems:

Storing Files

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

Recall: The Storage Stack

Recall: Storing Files

Files can be allocated in different ways

Contiguous allocation

all bytes together, in order

Linked Structure

Each points to the next block

Indexed Structure

Index block, pointing to many other blocks

Which is best?

For sequential access? Random access?

Large files? Small files? Mixed?

Recall: File structure
Each file is a fixed, asymmetric tree, with fixed
size data blocks (e.g. 4KB) as its leaves

The root of the tree is the file’s inode, containing

metadata (more about it later)

a set of 15 pointers

first 12 point to data blocks

last three point to intermediate blocks, themselves
containing pointers…

#13: pointer to a block containing pointers to data blocks

#14: double indirect pointer

#15: triple indirect pointer (!)

Recall: Multilevel index
Inode Array

I-node

File

Metadata

Data
blocks

} 12 x
4KB =
48KB

indirect block

 contains pointers to data blocks

 4 Bytes entries
}1K x 4KB

= 4MB

double indirect block

 contains pointers to indirect blocks

} 1K x 1k x
4KB =
4GB

triple indirect block

 contains pointers to double indirect blocks } 1K x

1k x

1k x

4KB =
4TB

at known location
on disk

file number =
inode number =
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37

Crash Consistency

Caching and Consistency
File systems maintain many data structures

Bitmap of free blocks and inodes

Directories

Inodes

Data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Caching and consistency
File systems maintain many data structures

Bitmap of free blocks and inodes

Directories

Inodes

Data blocks

Data structures cached for performance

works great for read operations...

...but what about writes?

Write-back caches

delay writes: higher performance at the cost of potential inconsistencies

Write-through caches

write synchronously but poor performance (fsync)

do we get consistency at least?

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner: rachit

permissions: read-only

size: 1

pointer: 4

pointer: null

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: rachit

permissions: read-only

size: 1

pointer: 4

pointer: null

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: rachit

permissions: read-only

size: 2

pointer: 4

pointer: 5

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

update data bitmap

Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner: rachit

permissions: read-only

size: 2

pointer: 4

pointer: 5

pointer: null

pointer: null

Suppose we append a
data block to the file

add new data block D2

update inode

update data bitmap

1

What if a crash or power outage occurs between writes?

If Only a

Single Write…

Just the data block (D2) is written to disk

Data is written, but no way to get to it - in fact, D2 still
appears as a free block

Write is lost, but FS (meta)data structures are consistent

Just the updated inode (Iv2) is written to disk

If we follow the pointer, we read garbage

File system inconsistency: data bitmap says block is free,
while inode says it is used. Must be fixed

Just the updated bitmap is written to disk

File system inconsistency: data bitmap says data block is used,
but no inode points to it. The block will never be used. Must
be fixed

If Two Writes…

Inode and data bitmap updates succeed

Good news: file system is consistent!

Bad news: reading new block returns garbage

Inode and data block updates succeed

File system inconsistency. Must be fixed

Data bitmap and data block succeed

File system inconsistency

No idea which file data block belongs to!

The Consistent Update
Problem

Several file systems operations update multiple
data structures

Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file

Would like to atomically move FS from one
consistent state to another

Solution 1:

File System Checker
Ethos: If it happens, I’ll do something about it

 Let inconsistencies happen and fix them post facto

during reboot

Classic example: fsck

Unix, 1986

Fixing inconsistencies post facto can be VERY slow

Solution 2:

Ordered Updates

Three rules towards a (quickly) recoverable FS:

Never reuse a resource before nullifying all pointers
to it

Never point to a structure before it has been
initialized

Never clear last pointer to live resource before setting
a new one

How?

A principled approach: Transactions

(e.g., nullify an i-node pointer to a data block before reallocating that block to another i-node)

(e.g., when renaming a file, do not remove old name for an i-node until after
new name has been written)

(e.g., must initialize i-node before a directory entry references it)

A principled approach:
Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions
occur is equivalent to transactions executing
sequentially)

Durable: once completed, effects are persistent

Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened

may require appropriate rollback

Solution 3: Journaling
(write ahead logging)
Turns multiple disk updates into a single disk write

“write ahead” a short note to a “log”, specifying
changes about to be made to the FS data structures

if a crash occurs while updating FS data structures,
consult log to determine what to do

no need to scan entire disk!

Data Jounaling:

an example

We start with

We want to add a new block to the file

Three easy steps

Write to the log 5 blocks:

write each record to a block, so it is atomic

Write the blocks for Iv2, Bv2, D2 to the FS proper [a.k.a checkpoint]

Mark the transaction free in the journal

What if we crash before the log is updated?

if no commit, nothing made it into FS - ignore changes!

What if we crash after the log is updated?

replay changes in log back to disk!

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

TxBegin | Iv2 | Bv2 | D2 | TxEnd

includes TxID and
blocks’ final addresses

Journaling and
Write Order

Issuing the 5 writes to the log
sequentially is slow

Issue at once, and transform in a single sequential write!?

Problem: disk can schedule writes out of order

first write TxBegin, Iv2, B2, TxEnd

then write D2

TxBegin | Iv2 | B2 | D2 | TxEnd

Disk loses power

Log contains:

syntactically, transaction log looks fine, even with nonsense in
place of D2!

TxBegin | Iv2 | B2 | ?? | TxEnd

TxEnd must block until prior blocks are on disk

Transaction committed when TxEnd on disk

Log Structured
File Systems

Instead of adding a log to the existing FS disk
layout, use all disk as a log

buffer all updates (including metadata!) into an in-
memory data structure

Periodically, write to persistent storage in a long
sequential transfer

Never overwrite existing data

always write data to “next” free locations

Sequential writes: much improved throughput

Log Structured
File Systems

But how does it work?

suppose we want to add a new block to a 0-sized file

not enough to write to log just the data block…

…we have to update the inode too!

LFS places both data block and inode in-memory

D I
b[0]:A0

Leverages write buffering to write a chunk of
updates all at once

A0 A1

Finding i-nodes
in UFS, just index into inode array

Super Block | Inodes | Data blocks

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Super Block Inodes Data blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

512 bytes/block

128 bytes/inode

To find address inode 11:

 addr(b1) + #inode x
 size(inode)

FFS is the same, with i-nodes divided among
block groups and stored at known locations

But in LFS i-nodes are scattered everywhere on disk!

Finding inodes in LFS

Inode map: a table indicating where each inode is
on disk: Imap(i#) -> disk address of i#

Keep it in memory, and periodically push it to disk

In case of failures, reconstruct

e.g., by scanning data on disk

LFS vs UFS
inode

directory

data

inode map

Log

Unix File System

Log-structured File System

Blocks written to
create two 1-block files:
dir1/file1 and dir2/file2
in UFS and LFS

dir1

dir1 dir2

dir2

file1 file2

file1 file2

Garbage collection
As old blocks of files are replaced by new ones, data in log become
fragmented: live and dead.

Cleaning used to produce contiguous space on which to write

compact M fragmented blocks into N new blocks, newly written to the log

free old M blocks

Cleaning mechanism:

How can LFS tell which blocks are live and which dead?

Cleaning policy

How often should the cleaner run?

How should the cleaner pick blocks?

No one-size-fits-all solution. Different solutions, different tradeoffs

See the discussion for SSD log-structured storage for examples, and tradeoffs

I/O systems are accessed through a
series of layered abstractions

Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices,
allows data to be read/written in
fixed sized blocks

Translates OS abstractions and hw
specific details of I/O devices

Control registers, bulk data transfer,
OS notifications

Application

Library

File System

Block Cache
Block Device
Interface

Device Driver
MM I/O,

DMA,Interrupts

Physical Device

Recall: The Storage Stack

