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I/O systems are accessed through a 
series of layered abstractions


Caches blocks recently read from disk

Buffers recently written blocks

Single interface to many devices, 
allows data to be read/written in 
fixed sized blocks

Translates OS abstractions and hw 
specific details of I/O devices

Control registers, bulk data transfer, 
OS notifications

Application

Library

File System

Block Cache
Block Device 
Interface 

Device Driver
MM I/O, 

DMA,Interrupts

Physical Device

Recall: The Storage Stack



Recall: The File System 
Abstraction

Addresses need for long-term information storage:

store large amounts of information

do it in a way that outlives processes (RAM will not do)

can support concurrent access from multiple processes


Presents applications with persistent, named data

Two main components: 


files 

directories



Recall: The File
A file is a named collection of data. In fact, it has 
many names, depending on context: 


i-node number: low-level name assigned to the file by the 
file system

path: human friendly name (HFN)—a string


must be mapped to inode number, somehow

file descriptor


dynamically assigned handle process a uses to refer to i-node 


The directory is just a special file



Recall: File System Layout
File System is stored on disks


Storage device be divided into one or more partitions

At a known location: Master Boot Record (MBR). It contains:


bootstrap code (loaded and executed by firmware)

partition table (addresses of where partitions start & end)


First block of each partition has boot block

loaded by executing code in MBR and executed on boot

MBR

Free Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

Partition 

Table

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4



Storing Files

Files can be allocated in different ways

Contiguous allocation


all bytes together, in order

Linked Structure


Each points to the next block

Indexed Structure


Index block, pointing to many other blocks


Which is best?

For sequential access? Random access?

Large files? Small files? Mixed?



Contiguous Allocation

All bytes together, in order

Simple: only need start block and size

Efficient: one seek to read entire file

Fragmentation: external, and can be serious

Usability: User need to know file’s size at time of creation


Or, a lot of “moving files around” as file size increases

file1 file2 file3 file4 file5

Used in CD-ROm, DVDs



Linked List Allocation

Each file is stored as a linked list of blocks

first word of each block points to next block

the rest of the block is data

File 
block 0

next

File 
block 1

next

File 
block 2

next

File 
block 3

next

File 
block 4

next

File A

Physical

Block 7 8 33 17 4

Space utilization: no external fragmentation

Simplicity: only need to find first block of each file

Performance: random access is slow


Core problem?

Accessing a byte may require accessing many many blocks


Implementation: blocks mix data and metadata



File Allocation Table 
(FAT) FS

Decouple data and metadata

reduces seeks (and enables 
caching!)

File 
block 0

next

File 
block 1

next

File 
block 2

next

File 
block 3

next

File 
block 4

next

7 8 33 17 4

Microsoft, late 70s
still widely used today 

thumb drives, camera cards, CD ROMs

DataMetadata

not to scale!

4

17

7
8

33



FAT File system

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

Index Structures

File Allocation Table (FAT)


array of 4-byte entries

one entry per block

file represented as a linked list 
of FAT entries

file # = index of first FAT entry 

Free space map

If data block i is free, 
then FAT[i] = 0

find free blocks by 
scanning FAT

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*

Directory

Maps file name to FAT index


Directory

jack.txt 12

jill.txt 9



FAT File system
Advantages


simple!

per file, needs only start block


widely supported

no external fragmentation

no conflating data and metadata in the same block

Disadvantages

Poor locality

many file seeks unless entire FAT in memory

1 TB (240 bytes) disk, 4kB (212 bytes) block, 
228 FAT entries; at 4B/entry, 1 GB (!)


Poor random access

needs sequential traversal


Volume and file size are limited

FAT entry is 32 bits, but top 4 are reserved

no more than 228 blocks

with 4kB blocks, at most 1TB FS

file no bigger than 4GB


Directory also has 32 bit entries

No support for advanced reliability techniques

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

20
19

0
0
0

0
0
0
0
0

0
0
0

0

0
0

*

*



Super

block

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

Tree-based 

Multi-level Index

UFS (Unix File System) (Ken Thompson, 1969)

4.2 BSD FFS (Fast File System) (McKusick, Joy, 
Leffler, Fabry, 1983)
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Data blocks
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}
i-node blocksIncludes


 location of free 

data blocks,

free inodes

storing an array of i-nodes



Multilevel index 
Inode Array

at known location 
on disk


file number = 
inode number = 
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37



File structure
Each file is a fixed, asymmetric tree, with fixed 
size data blocks (e.g. 4KB) as its leaves

The root of the tree is the file’s inode, containing


metadata (more about it later)

a set of 15 pointers


first 12 point to data blocks

last three point to intermediate blocks, themselves 
containing pointers…


#13: pointer to a block containing pointers to data blocks

#14: double indirect pointer

#15: triple indirect pointer (!)



Multilevel index 
Inode Array

I-node

File 

Metadata

Data 
blocks

} 12 x 
4KB = 
48KB

indirect block

  contains pointers to data blocks

 4 Bytes entries
}1K x 4KB 

= 4MB

double indirect block

  contains pointers to indirect blocks

} 1K x 1k x 
4KB = 
4GB

triple indirect block

  contains pointers to double indirect blocks } 1K x 


1k x 

1k x

4KB = 
4TB

at known location 
on disk


file number = 
inode number = 
index in the array

Super

block

16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

37



Multilevel index:  
key ideas

Tree structure

efficient in finding blocks


High degree

efficient in sequential reads


once an indirect block is read, can 
read 100s of data block


Fixed structure

simple to implement


Asymmetric

supports large files

small files don’t pay large 
overheads

File 

Metadata

Inode

array

Data

blocks



Good for small files…
I-node

File 

Metadata

All blocks reached 
by direct pointers

If instead all blocks were accessed through a 
3-level index, a file occupying a single 4KB block 
would require 16 KB:


a triple indirect block

a double indirect block

an indirect block

the 4KB data block

reading would require reading 5 blocks to 
traverse the tree



Why Unbalanced  Trees?

(and other fun facts)

Most files are small  


Average file size is growing  


Most bytes are stored in large files 


File systems contains lots of files 


File systems are roughly half full


Directories are typically small 

Roughly 2K is the most common size

Almost 200K is the average

A few big files use most of the space

Almost 100K on average

Even as disks grow, file system remains  about 50% full

Many have few entries; most have 20 or fewer



What else 

is in an i-node?

Type

ordinary file

directory

symbolic link

special device 


Size of the file (in bytes)

No. of links to the i-node

Owner (user id & group id)

Protection bits

Times: creation, last accessed, last modified

Inode

File 

Metadata



Reading a File
First, must open the file


Follow the directory tree, until we get to the file’s inode

Read that inode


do a permission check

return a file descriptor fd


Then, for each read() that is issued:

read inode

read appropriate data block (depending on offset)

update last access time in inode

update file offset in in-memory open file table for fd



Writing a File
Must open the file, like before

But now may have to allocate a new data block


each logical write can generate up to five I/O ops

reading the free data block bitmap

writing the free data block bitmap

reading the file’s inode

writing the file’s inode to include pointer to the new block

writing the new data block


Creating a file is even worse! 
read and write free inode bitmap

write inode

(read) and write directory data

write directory inode

and if directory 
block is full,
must allocate 
another block



BSD FFS: 

Fast File System

UFS treats disks as if they were RAM

files grab first free data block: seeks and fragmentation


FFS optimizes file system layout for how disks work

Smart locality heuristics


block group placement

optimizes placement for when a file data and metadata, and 
other files within same directory, are accessed together


reserved space

gives up about 10% of storage to allow flexibility needed to 
achieve locality



Directory
A file that contains a collection of mapping from file 
name to file number


To look up a file, find the directory that contains the 
mapping to the file number

To find that directory, find the parent directory that 
contains the mapping to that directory’s file number...

Good news: root directory has well-known number (2) 

Documents

Music
griso.jpg

394

416
864

/Users/rachit ..
.

256
1061



Find file /Users/rachit/zen.jpg

Looking up a file

file 2

“/” bin 438

usr
Users 256

782

4450 1197
4410
rachit 1061

294file 256

“/Users”

file 1061

“/Users/zen”

Documents

zen.jpg

394

416

864

Music

file 864

“/Users/rachit/zen.jpg”



Directory Layout
Directory stored as a file


Linear search to find filename (small directories)

256 416 394 864

. .. Music

File 1061

/Users/rachit

Documents griso.jpg

1061 Free SpaceFree Space

End of File

Larger directories use B trees 

searched by hash of file name



Questions?



Crash Consistency



Caching and Consistency
File systems maintain many data structures


Bitmap of free blocks and inodes

Directories

Inodes

Data blocks


Data structures cached for performance

works great for read operations...

...but what about writes?



Caching and consistency
File systems maintain many data structures


Bitmap of free blocks and inodes

Directories

Inodes

Data blocks


Data structures cached for performance

works great for read operations...

...but what about writes?


Write-back caches

delay writes: higher performance at the cost of potential inconsistencies


Write-through caches

write synchronously but poor performance (fsync)


do we get consistency at least?



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 --

data blocks

owner:  rachit

permissions: read-only

size:   1

pointer:  4

pointer:  null

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv1 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  rachit

permissions: read-only

size:   1

pointer:  4

pointer:  null

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00 0

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  rachit

permissions: read-only

size:   2

pointer:  4

pointer:  5

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 



Example: a tiny ext2

6 blocks, 6 inodes

0 1 0 0 0 0

inode bitmap

0 10 00

data bitmap

-- Iv2 -- -- -- --

i-nodes

-- -- -- -- D1 D2

data blocks

owner:  rachit

permissions: read-only

size:   2

pointer:  4

pointer:  5

pointer:  null

pointer:  null

Suppose we append a 
data block to the file 

add new data block D2

update inode

update data bitmap 

1

What if a crash or power outage occurs between writes?



If Only a 

Single Write…

Just the data block (D2) is written to disk

Data is written, but no way to get to it - in fact, D2 still 
appears as a free block

Write is lost, but FS (meta)data structures are consistent


Just the updated inode (Iv2) is written to disk

If we follow the pointer, we read garbage

File system inconsistency: data bitmap says block is free, 
while inode says it is used. Must be fixed


Just the updated bitmap is written to disk

File system inconsistency: data bitmap says data block is used, 
but no inode points to it.  The block will never be used. Must 
be fixed



If Two Writes…

Inode and data bitmap updates succeed

Good news: file system is consistent!

Bad news: reading new block returns garbage


Inode and data block updates succeed

File system inconsistency. Must be fixed


Data bitmap and data block succeed

File system inconsistency

No idea which file data block belongs to!



The Consistent Update 
Problem

Several file systems operations update multiple 
data structures


Create new file

update inode bitmap and data bitmap

write new inode

add new file to directory file


Would like to atomically move FS from one 
consistent state to another



Solution 1: 

File System Checker
Ethos: If it happens, I’ll do something about it


 Let inconsistencies happen and fix them post facto

during reboot


Classic example: fsck

Unix, 1986


Fixing inconsistencies post facto can be VERY slow



Solution 2:

Ordered Updates

Three rules towards a (quickly) recoverable FS:

Never reuse a resource before nullifying all pointers 
to it 

Never point to a structure before it has been 
initialized

Never clear last pointer to live resource before setting 
a new one


How?

A principled approach: Transactions

(e.g., nullify an i-node pointer to a data block before reallocating that block to another i-node)

(e.g., when renaming a file, do not remove old name for an i-node until after 
new name has been written)

(e.g., must initialize i-node before a directory entry references it)



A principled approach: 
Transactions

Group together actions so that they are

Atomic: either all happen or none

Consistent: maintain invariants

Isolated: serializable (schedule in which transactions 
occur is equivalent to transactions executing 
sequentially)

Durable: once completed, effects are persistent


Transaction can have two outcomes:

Commit: transaction becomes durable

Abort: transaction never happened


may require appropriate rollback




