
Opera&ng	Systems

CS4410

Lecture	17	
End-to-end	view	of	networking	

(First	step	to	understanding	network	stacks)

Rachit	Agarwal



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts	

• Three	important	components:		

• Core	infrastructure:	
• A	set	of	network	elements	connected	together	

• Protocols:	
• Needed	to	use	the	network	

• Purpose:	
• Sharing	resources	at	the	end	hosts	(computing	devices)

What	is	a	computer	network?



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts

What	is	a	computer	network?



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts	

• Three	important	components:		

• Core	infrastructure:	
• A	set	of	network	elements	connected	together	

• Protocols:	
• Needed	to	use	the	network	

• Purpose:	
• Sharing	resources	at	the	end	hosts	(computing	devices)

What	is	a	computer	network?



A	computer	network	delivers	data	between	the	end	points	

• One	and	only	one	task:	Delivering	the	data	

• Read	that	sentence	again.	Remember	it	forever.	

• This	delivery	is	done	by:	
• Chopping	the	data	into	packets	
• Sending	individual	packets	across	the	network	
• Reconstructing	the	data	at	the	end	points	

• That	is	all!

What	do	computer	networks	do?



• Support	the	logical	equivalence	of	Interprocess	Communication	(IPC)	

• Mechanism	for	“processes	on	the	same	host”	to	exchange	messages	

• Computer	networks	allow	“processes	on	two	different	hosts”	to	
exchange	messages	

• Clean	separation	of	concerns	
• Computer	networks	deliver	data	

• Applications	running	on	end	hosts	decide	what	to	do	with	the	data	

• Keeps	networks	simple,	general	and	application-agnostic

Data	delivery	as	a	fundamental	goal



Three	Basic	pieces	in	the	core	infrastructure	

• End	hosts:	they	send/receive	packets	

• Switches/Routers:	they	forward	packets	

• Links:	connect	end	hosts	to	switches,	and	switches	to	each	other

What	do	computer	networks	look	like?



End	hosts,	switches/routers,	links

What	do	computer	networks	look	like?



Lets	make	the	picture	simpler



A	set	of	network	elements	connected	together,	that	implement	a	set	of	
protocols	for	the	purpose	of	sharing	resources	at	the	end	hosts

What	is	a	computer	network?



A	computer	network	can	be	abstractly	represented	as	a	graph

PathSource

Destination

Source

Destination

Path



• Locating	the	destination:	Naming,	addressing	

• Finding	a	path	to	the	destination:	Routing	

• Sending	data	to	the	destination:	Forwarding	

• Failures,	reliability,	etc.:	Distributed	routing	and	congestion	control

Many	mechanisms	underneath!

Will	take	the	entire	course	to	learn	these!	

CS4450	:-)



A	computer	network	can	be	abstractly	represented	as	a	graph

PathSource

Destination

Source

Destination

Path



Sharing	the	network	(graph)

PathSource

Destination

Source

Destination

Path



Today’s	lecture:	sharing	computer	networks

1. What	does	network	sharing	mean?	

2. What	are	the	performance	metrics?	

3. What	are	the	various	mechanisms	for	sharing	networks?	

4. Why	“packets”	and	“flows”?	



What	does	network	sharing	mean?



• Must	support	many	“users”	at	the	same	time	

• Each	user	wants	to	use	the	network	(send	and	receive	data)	

• Limited	resources	

• Fundamental	question:	

• How	does	network	decide	which	resource	to	allocate	to	which	user	
at	any	given	point	of	time?

The	problem	of	sharing	networks



What	are	the	performance	metrics?



• Bandwidth:	Number	of	bits	sent	per	second	(bits	per	second,	or	bps)	

• Depends	on		
• Hardware	
• Throughput:	Network	traffic	conditions	
• ….	

• Delay:	Time	for	all	bits	to	go	from	source	to	destination	(seconds)	

• Depends	on	
• Hardware	
• Distance	
• Latency:	Traffic	from	other	sources	

• ….	

• Many	other	performance	metrics	(reliability,	etc.)	

• We	will	come	back	to	other	metrics	later	…

Performance	metrics	in	computer	networks!

Bandwidth



What	are	the	various	mechanisms	for	sharing	networks?



• Reservations	
• On	demand

Two	approaches	to	sharing	networks



• First:	Reservations	
• Reserve	bandwidth	needed	in	advance	
• Set	up	circuits	and	send	data	over	that	circuit	

• How	much	bandwidth	to	reserve?	

• Applications	may	generate	data	at	rate	varying	over	time	

• 100MB	in	first	second	

• 10MB	in	second	second	…	

• Must	reserve	for	peak	bandwidth	(100MB)

Two	approaches	to	sharing	networks



Telephone	networks	

• One	of	the	many	approaches	to	implementing	reservations	

• Mechanism:	

• Source	sends	a	reservation	request	for	peak	demand	to	destination	

• Switches/routers	establish	a	“circuit”	
• Source	sends	data	
• Source	sends	a	“teardown	circuit”	message

Circuit	switching:	Implementing	reservations	since	…



Circuit	switching:	an	example	(red	request	fails)

Source

Destination

Source

Destination

Bandwidth	
=	100Mbps

Request	=	
100Mbps



Source

Destination

Source

Destination

Bandwidth	
=	100Mbps

Request	=	
10Mbps

Request	=	
10Mbps

Circuit	switching:	another	example	(red	request	succeeds)



• Circuit	is	established	

• Link	fails	along	path	(!!!!!!!)	

• First	time	we	have	seen	failures	making	our	life	complicated.	

• Remember	this	moment.	

• Its	gonna	happen,	over	and	over	again.	

• Must	establish	new	circuit

Circuit	switching	and	failures

Circuit	switching	doesn’t	route	around	failures!!



• Goods:	
• Predictable	performance	

• Reliable	delivery	(assuming	no	hardware	failures)	

• Simple	forwarding	mechanism	

• Not-so-goods:	
• Handling	hardware	failures	
• Resource	underutilization	
• Blocked	connections	
• Connection	set	up	overheads	
• Per-connection	state	in	switches	(scalability	problem)

Circuit	switching	summary



• Second:	On	demand	(also	known	as	“best	effort”)	

• Designed	specifically	for	the	Internet	
• Break	data	into	packets	
• Send	packets	when	you	have	them	

• Hope	for	the	best	…

Two	approaches	to	sharing	networks



Source

Destination

Source

Destination

Packet	switching:	an	example



• Packets	carry	data	(are	bag	of	bits):	
• Header:	meaningful	to	network	(and	network	stack)	

• can	be	multiple	headers	

• Body:	meaningful	only	to	application	

• More	discussion	in	next	lecture	

• Body	can	be	bits	in	a	file,	image,	whatever	

• can	have	its	own	application	“header”	

• What	information	goes	in	the	header?

Packets



• Packets	must	describe	where	it	should	be	sent	

• Requires	an	address	for	the	destination	host	
• can	be	multiple	headers	

• Packets	must	describe	where	its	coming	from	

• why?	
• Acknowledgments,	etc.	

• Thats	the	only	way	a	router/switch	can	know	what	to	do	with	the	packet

What	must	headers	contain	to	enable	network	functionality?



• Goods:	
• Easier	to	handle	failures	
• No	resource	underutilization	
• No	blocked	connection	problem	

• No	per-connection	state	
• No	set-up	cost	

• Not-so-goods:	
• Unpredictable	performance	

• High	latency	
• Packet	header	overhead

Recap:	Packet	switching	summary



• Pros	for	circuits:	
• Better	application	performance	(reserved	bandwidth)	

• More	predictable	and	understandable	(w/o	failures)	

• Pros	for	packets:	
• Better	resource	utilization	
• Easier	recovery	from	failures		

• Faster	startup	to	first	packet	delivered

Circuits	vs	packets



• Statistical	multiplexing:	combining	demands	to	share	resources	efficiently	

• Long	history	in	computer	science	

• Processes	on	an	OS	(vs	every	process	has	own	core)	
• Cloud	computing	(vs	every	one	has	own	datacenter)	

• Based	on	the	premise	that:	

• Sum	of	instantaneous	demands	<<	sum	of	peak	demands	

• Therefore,	it	is	better	to	share	resources	than	to	strictly	partition	them	…

Statistical	multiplexing



Both	embody	statistical	multiplexing	

• Reservation:	sharing	at	connection	level	
• Resources	shared	between	connections	currently	in	system	

• Reserve	the	peak	demand	for	a	flow	

• On-demand:	sharing	at	packet	level	

• Resources	shared	between	packets	currently	in	system	

• Resources	given	out	on	packet-by-packet	basis	
• No	reservation	of	resources

Two	approaches	to	sharing	networks



End-to-end	story



• Naming,	addressing:	Locating	the	destination	

• Routing:	Finding	a	path	to	the	destination	

• Forwarding:	Sending	data	to	the	destination	

• Reliability:	Handling	failures,	packet	drops,	etc.

Four	fundamental	problems!



• Network	Address:	where	host	is	located	
• Requires	an	address	for	the	destination	host	

• Host	Name:	which	host	it	is	

• why	do	we	need	a	name?	

• When	you	move	a	host	to	new	building	

• Address	changes		
• Name	does	not	change	

• Same	thing	with	your	own	name	and	address!	

• Remember	the	analogy:	human	names,	addresses,	post	office,	letters

Fundamental	problem	#1:	Naming	and	Addressing



• Consider	when	you	access	a	web	page	
• Insert	URL	into	browser	(eg,	www.cornell.edu)	
• Packets	sent	to	web	site	(reliably)	
• Packet	reach	application	on	destination	host	

• How	do	you	get	to	the	website?	
• URL	is	user-level	name	(eg,	www.cornell.edu)	

• Network	needs	address	(eg,	where	is	www.cornell.edu)?	

• Must	map	names	to	addresses	

• Just	like	we	use	an	address	book	to	map	human	names	to	addresses

Names	versus	addresses

http://www.cornell.edu
http://www.cornell.edu
http://www.cornell.edu


• On	the	Internet,	we	only	name	hosts	(sort	of)	

• URLs	are	based	on	the	name	of	the	host	containing	the	content	(that	
is,	www.cornell.edu	names	a	host)	

• Before	you	can	send	packets	to	www.cornell.edu,	you	must	resolve	names	
into	the	host’s	address	

• Done	by	the	Domain	Name	System	(DNS)

Mapping	Names	to	Addresses

The	source	knows	the	name;		

Maps	that	name	to	an	address	using	DNS!

http://www.cornell.edu
http://www.cornell.edu


Questions?



Routing	packets	through	network	elements	(eg,	routers)	to	destination	

• Given	destination	address	(and	name),	how	does	each	switch/router	
know	where	to	send	the	packet	so	that	the	packet	reaches	its	destination	

• When	a	packet	arrives	at	a	router	

• a	routing	table	determines	which	outgoing	link	the	packet	is	sent	on	

• Computed	using	routing	protocols

Fundamental	problem	#2



• Distributed	algorithm	that	runs	between	routers	

• Distributed	means	no	single	router	has	“full”	view	of	the	network	

• Exchange	of	messages	to	gather	“enough”	information	…	

• …	about	the	network	topology	

• Compute	paths	through	that	topology	

• Store	forwarding	information	in	each	router	

• If	packet	is	destined	for	X,	send	out	using	link	l1	
• If	packet	is	destined	for	Y,	send	out	using	link	l2	
• Can	packets	going	to	different	destinations	sent	out	to	same	link?	

• We	call	this	a	routing	table

Routing	protocols	(conceptually)



Questions?



Queueing	and	Forwarding	of	packets	at	switches/routers

Fundamental	problem	#3

Input	queue

Virtual	output	queue

Output	queue



Queueing	and	Forwarding	of	packets	at	switches/routers	

• Queueing:	When	a	packet	arrives,	store	it	in	“input	queues”		

• Each	incoming	queue	divided	into	multiple	virtual	output	queues	

• One	virtual	output	queue	per	outgoing	link	
• When	a	packet	arrives:	

• Look	up	its	destination’s	address	(how?)	
• Find	the	link	on	which	the	packet	will	be	forwarded	(how?)	
• Store	the	packet	in	corresponding	virtual	output	queue	

• Forwarding:	When	the	outgoing	link	free	

• Pick	a	packet	from	the	corresponding	virtual	output	queue	

• forward	the	packet!

Fundamental	problem	#3



• Packets	must	describe	where	it	should	be	sent	

• Requires	an	address	for	the	destination	

• Packets	must	describe	where	its	coming	from	

• For	handling	failures,	etc.	
• Requires	an	address	for	the	source	

• Packets	must	carry	data	

• can	be	bits	in	a	file,	image,	whatever

What	must	packets	carry	to	enable	forwarding?

Header Data



• Processing	delay	
• Easy;	each	switch/router	needs	to	decide	where	to	put	packet	
• Requires	checking	header,	etc.	

• Queueing	delay	
• Harder;	depends	on	“how	many	packets	are	in	front	of	me”		

• Depends	on	network	load	
• As	load	increases,	queueing	delay	increases	

• In	an	extreme	case,	increase	in	network	load	

• results	in	packet	drops	

• We	will	return	to	this	in	much	more	depth	later	…

Switch	Processing	and	Queueing	delay



Questions?



How	do	you	deliver	packets	reliable?	

• Packets	can	be	dropped	along	the	way	
• Buffers	in	router	can	overflow	
• Routers	can	crash	while	buffering	packets	
• Links	can	garble	packets	

• How	do	you	make	sure	packets	arrive	safely	on	an	unreliable	network?	

• Or,	at	least,	know	if	they	are	delivered?	
• Want	no	false	positives,	and	high	change	of	success

Fundamental	problem	#4



• Who	is	responsible	for	this?	(architecture)	

• Network?	
• Host?	

• How	is	it	implemented?	(engineering)	

• We	will	consider	both	perspectives

Two	questions	about	reliability



Questions?



• We	now	have	the	address	of	the	web	site	

• And,	a	route/path	to	the	destination	
• And,	mechanisms	in	place	to	forward	the	packets	at	each	switch/router	

• In	a	reliable	manner	

• So,	we	can	send	packets	from	source	to	destination	

• Are	we	done?	

• When	a	packet	arrives	at	a	host,	what	does	the	host	do	with	it?	

• To	which	process	(application)	should	the	packet	be	sent?	

• If	the	packet	header	only	has	the	destination	address,	how	does	the	host	
know	where	to	deliver	packet?	

• There	may	be	multiple	applications	on	that	destination

Finishing	our	story



• Who	puts	the	source	address,	source	port,	destination	address,	

destination	port	in	the	packet	header?

And	while	we	are	finishing	our	story	….



The	final	piece	in	the	game:	End-host	stack

Of	Sockets	and	Ports	

• When	a	process	wants	access	to	the	network,	it	opens	a	socket,	which	is	
associated	with	a	port	

• Socket:	an	OS	mechanism	that	connects	processes	to	the	network	stack	

• Port:	number	that	identifies	that	particular	socket	

• The	port	number	is	used	by	the	OS	to	direct	incoming	packets



• Packet	Header	must	include:	

• Destination	address	(used	by	network)	
• Destination	port	(used	by	network	stack)	
• And?	
• Source	address	(used	by	network)	
• Source	port	(used	by	network	stack)	

• When	a	packet	arrives	at	the	destination	host,	packet	is	delivered	to	the	
socket	associated	with	the	destination	port	

• More	details	later

Implications	for	Packet	Header



• Network:	Deliver	packets	from	host	to	host	(based	on	address)	

• Network	stack	(OS):	Deliver	packets	to	appropriate	socket	(based	on	port)	

• Applications:		
• Send	and	receive	packets	
• Understand	content	of	packet	bodies

Separation	of	concerns



• Application	opens	a	socket	that	allows	it	to	connect	to	the	network	stack	

• Maps	name	of	the	web	site	to	its	address	using	DNS	

• The	network	stack	at	the	source	embeds	the	address	and	port	for	both	
the	source	and	the	destination	in	packet	header	

• Each	router	constructs	a	routing	table	using	a	distributed	algorithm	

• Each	router	uses	destination	address	in	the	packet	header	to	look	up	the	
outgoing	link	in	the	routing	table	

• And	when	the	link	is	free,	forwards	the	packet		

• When	a	packet	arrives	the	destination:		

• The	network	stack	at	the	destination	uses	the	port	to	forward	the	
packet	to	the	right	application

The	end-to-end	story




