
Lecture 15:

Memory Management


Page Tables, and page 
replacement algorithms
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Recall: Paging
Allocate VA & PA memory in chunks of the same, 
fixed size (pages and frames, respectively)

Adjacent pages in VA need not map to 
contiguous frames in PA!


free frames can be tracked using a simple bitmap

0011111001111011110000 one bit/frame


no more external fragmentation!

possible internal fragmentation


when memory needs are not a multiple of a page 

typical size of page/frame: 4KB to 16KB
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Recall: Basic Paging
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Physical

Memory

Page Table
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The Page Table

lives in memory

at the physical address 
stored in the Page Table 
Base Register

PTBR value saved/restored 
in PCB on context switch

Frame



Recall: Basic goals in paging

Minimize Storage overhead 

data structure overhead (the Page Table itself)

fragmentation


How large should a page be?


Fast Address translation

We need “fast” lookups on page table


Efficient sharing of physical memory

By multiple processes
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Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Linear array: one entry for each page, maps it to a frame

Storage overheads:


Number of entries * size of entry 

Number of entries = number of pages = (VAS size / page size)

Size of entry ~ log2 (PAS Size / frame size) + control bits

32-bit virtual address space, 4GB physical memory, 4KB pages = 4MB

64-bit virtual address space, 4GB physical memory, 4KB pages = 16 PB
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Paging—second attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Multi-level page tables: store a tree


But only those nodes/edges that are required to map pages to frames
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Multi-level Paging

Structure virtual 
address space as a tree

Virtual address
p1 p2 op3
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PTBR 7



If we use a tree…

Last 12 bits index into the page


page size = 212 


#pages = 220 (since total memory = 4GB)

Next 6 bits index into last-level of the tree


#entries in each chunk = 26


#chunks = 214 (to account for 220 pages)

Next 6 bits index into second-last-level of the tree


#entries in each chunk = 26


#chunks = 28 (to account for 214 last-level chunks) 

Next 8 bits index into first-level of the tree


#entries in each chunk = 28


#chunks = 1 (to account for 28 second-last-level 
chunks)

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

26

26

26

28

28

1

32-bit, 4GB, 4KB pages Example



If we use a tree…

Last 12 bits index into the page


page size = 212 


#pages = 220 (since total memory = 4GB)

Next 16 bits index into last-level of the tree


#entries in each chunk = 216


#chunks needed = 24 (to account for 220 pages)

Next 16 bits index into second-last-level of the tree


#entries in each chunk = 216


#chunks needed = 1 (to account for 24 last-level 
chunk) 


Next 20 bits index into first-level of the tree

#entries in each chunk = 220


#chunks = 1 (to account for 1 second-last-level 
chunk)

}12 bits}16 bits}16 bits}20 bits

64-bit, 4GB, 4KB pages Example

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24



How many chunks of size 216 are 
needed to hold 220 PTEs of frames 
starting at 0?


220/216 = 24 = 16  

}12 bits}16 bits}16 bits}20 bits

220236

216

216
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220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>
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How many chunks of size 216 are 
needed to hold pointers to 16 pink 
chunks? 

1

So, if each entry is 4 bytes, the PT takes
4 * (1 x 220 + 1 x 216 + 16 x 216) = 8.0625MB

Can be further reduced a bit

64-bit, 4GB, 4KB pages Example



Questions?
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Where are we?
Storage overheads


Minimized! Using multi-level page tables.


How about address translation time?

Every new level of paging


reduces the memory overhead for computing the 
mapping function…


… but increases the time necessary to perform 
the mapping function 
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Caching!

Keep the results of recent virtual address to 
physical address translations in a structure 
called Translation Lookaside Buffer (TLB)



Speeding things up: 

The TLB
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Address Translation  

with TLB

CPU

Physical

Memory

TLB Page

Table

Virtual 

Address

Miss

+

Invalid Exception

Hit
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Frame Frame

Physical

Address

Data

Data

Virtual 

Address

Offset
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Access TLB before accessing memory!



TLB Hit and Miss

The TLB is small; it cannot hold all PTEs

it can be fast only if it is small!


Some translations will inevitably miss the TLB


Must access memory to find the appropriate PTE


called walking the page table


incurs large performance penalty 



Handling TLB Misses

Hardware-managed (e.g., x86)

The hardware does the page walk

Hardware fetches PTE and inserts it in TLB


If TLB is full, must replace another TLB entry

Done transparently to system software


Software-managed (e.g., MIPS)

Hardware raises an exception

OS does the page walk, fetches PTE, and 
inserts evicts entries in TLB



Tradeoffs, Tradeoffs…
Hardware-managed TLB

+ No exception on TLB miss. Instruction just stalls

+ No extra instruction/data brought into the cache

- OS has no flexibility in deciding Page Table organization

- OS has no flexibility in TLB entry replacement policy


Software-managed TLB

+ OS can define Page Table organization

+ More flexible TLB entry replacement policies  

- Slower: exception causes to flush pipeline; execute 

handler; pollute cache  



TLB Consistency - I

On context switch

VAs of old process should no longer be valid


Change PTBR — but what about the TLB?
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TLB Consistency - I

On context switch

VAs of old process should no longer be valid


Change PTBR — but what about the TLB?

Option 1: Flush the TLB

1 0x0053 0x0012 R/W

PID VirtualPage PageFrame Access

TLB Entry

Ignore entries with wrong PIDs

Option 2: Add pid tag to each TLB entry
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TLB Consistency - II

What if OS changes permissions on page?

If permissions are reduced, OS must ensure 
affected TLB entries are purged


If permissions are expanded, no problem

new permissions will cause an exception and OS 
will restore consistency 
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Virtual memory
Consider a server with 4GB memory.

What if a process has 16GB requirement?

What if we have two concurrently running processes


each having 4GB requirements?



Virtual Memory
Each process has the illusion of a large address space


2x bytes for x-bit addressing


However, physical memory is usually much smaller

and we want to run multiple processes concurrently


How do we give this illusion to multiple processes?

Virtual Memory: back every memory address with a file on disk

Page 0

Page 1
Page 2
Page 3
Page 4

Page N-1

Virtual 
Memory

Page

Table

Physical Memory
Disk



Processes 

execute from disk!

RAM is just another layer of cache!

L1

L2

L3

RAM

DISK



A Virtual Page can be…
Mapped (present bit set in PTE)


to a physical frame, with certain r/w/x permissions


Not mapped (present bit not set in PTE)

in some physical frame, but not currently mapped

or still in the original program file

or needing to be zero-filled (heap, BSS, stack)

or on backing store (paged or swapped out)

or not part of one of the processes’ segment

{

<latexit sha1_base64="/wh9h0KpVfAZxXT4Nq6ORXIBdBg=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkQXMz6MVjFLNAEkJPpydp0rPQ/UYIQ85eRLwo+Ef+gn/hJ9iZ6MGtoKGoqua9el4shUbHebNyS8srq2v59cLG5tb2TnF3r6WjRDHeZJGMVMejmksR8iYKlLwTK04DT/K2N7mY++1brrSIwhucxrwf0FEofMEoGum6lw6KJdd2MpD/SensHTI0BsXX3jBiScBDZJJq3XWdGPspVSiY5LNCL9E8pmxCRzzN9puRIyMNiR8p80IkmfotRwOtp4FnkgHFsf7pzcW/vG6Cfq2fijBOkIdsMchPJMGIzMuSoVCcoZwaQpkSZkPCxlRRhuYkBVPdsSsnVbfikN/kq3qrbLtVu3ZVLtXPFzeAPBzAIRyDC6dQh0toQBMY+HAPT/BsUevOerAeF9Gc9flnH77BevkAN+OKew==</latexit>

Page 
Fault

Segmentation Fault! 

may trigger Page Fault{

<latexit sha1_base64="/wh9h0KpVfAZxXT4Nq6ORXIBdBg=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkQXMz6MVjFLNAEkJPpydp0rPQ/UYIQ85eRLwo+Ef+gn/hJ9iZ6MGtoKGoqua9el4shUbHebNyS8srq2v59cLG5tb2TnF3r6WjRDHeZJGMVMejmksR8iYKlLwTK04DT/K2N7mY++1brrSIwhucxrwf0FEofMEoGum6lw6KJdd2MpD/SensHTI0BsXX3jBiScBDZJJq3XWdGPspVSiY5LNCL9E8pmxCRzzN9puRIyMNiR8p80IkmfotRwOtp4FnkgHFsf7pzcW/vG6Cfq2fijBOkIdsMchPJMGIzMuSoVCcoZwaQpkSZkPCxlRRhuYkBVPdsSsnVbfikN/kq3qrbLtVu3ZVLtXPFzeAPBzAIRyDC6dQh0toQBMY+HAPT/BsUevOerAeF9Gc9flnH77BevkAN+OKew==</latexit>



Handling a Page Fault
Identify page and reason


access inconsistent with segment access rights

terminate process


access a page currently on disk

does frame with the code/data already exist?


if not, allocate a frame and load page in

access of zero-initialized data (BSS) or stack


allocate a frame, initialize all bytes to zero



When a page 

must be brought in…
Find a free frame


evict a page if there are no free frames

Issue disk request to fetch data for page

Move “current process” to disk queue

Context switch to new process

Update PTE when disk completes


frame number, present bit, RWX bits, etc.

Move “current process” to ready queue



When a page 

must be swapped out…
Find all page table entries that refer to old page


Frame might be shared

Set each page table entry to not present (invalid)

Remove any TLB entries


“TLB Shootdown”: in multiprocessors, TLB entry 
must be eliminated from the TLB of all processors 


Write page back to disk, if needed

Dirty bit in PTE indicates need



Demand Paging 

MIPS Style

1. TLB Miss

2. Exception to kernel

3. Page Table walk

4. Page fault (present bit 

not set in Page Table)

5. Convert VA to file offset

6. Allocate page frame 

(evict page if needed)

7. Initiate disk block read 

into page frame


8. Disk interrupt when 
DMA completes


9. Mark page as present

10. Update TLB

11. Resume process at 

faulting instruction

12. TLB hit

13. Execute instruction

29

Software handling 
page fault



Demand Paging: 

x86 Style 

1. TLB Miss

2. Page Table walk

3. Page fault (page not 

present  in Page Table)

4. Exception to kernel

5. Convert VA to file offset

6. Allocate page frame 

(evict page if needed)

7. Initiate disk block read 

into page frame


8. Disk interrupt when 
DMA completes


9. Mark page as present

10. Resume process at 

faulting instruction

11. TLB miss

12. Page Table walk –

success!

13. TLB updated

14. Execute instruction

30

Software handling 
page fault



Page Replacement

When physical memory is full, we need to 
choose a “victim” to evict

Local vs Global replacement


Local: victim chosen from frames of process 
experiencing page fault


fixed allocation of frames per process

Global: victim chosen from frames allocated to 
any process


variable allocation of frames per process

Goal: minimizing number of page faults
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Page Replacement 
Algorithms

Random: Pick any page to eject at random

Used mainly for comparison


FIFO: The page brought in earliest is evicted

Ignores usage


LRU: Evict page not been used the longest

Assumes past is good predictor of the future


MRU: Evict most recently used page

Good for data accessed only once, e.g., a movie


LFU: Evict least frequently used page

OPT: Belady’s algorithm




How do we pick a victim?

We want: 

low page fault-rate

page faults as inexpensive as possible


We need:

a way to compare the relative performance 
of different page replacement algorithms

some absolute notion of what a “good” page 
replacement algorithm should accomplish
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Comparing Page 
Replacement Algorithms

Record a trace of the pages accessed by a 
process


E.g. 3,1,4,2,5,2,1,2,3,4 (or c,a,d,b,e,b,a,b,c,b)


Simulate behavior of page replacement 
algorithm on trace 

Record number of page faults generated
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Time 0 1 2 3 4 5 6 7 8 9 10 11 12
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Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
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Replace page needed furthest in future
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(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
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1 b
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Faults X
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Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c

0 a a a

1 b b

2 c

Faults X X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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ge

 F
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es

X X

d a    b    e    a    b    c    d    e 

Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d

0 a a a a

1 b b b

2 c d

Faults X X X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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√
Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a

0 a a a a a

1 b b b b

2 c d d

Faults X X X √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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√
Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b

0 a a a a a a

1 b b b b b

2 c d d d

Faults X X X √ √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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    a    b    c    d    e 

Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e
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2 c d d d e
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Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a

0 a a a a a a a a

1 b b b b b b b

2 c d d d e e

Faults X X X √ √ X √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b

0 a a a a a a a a a

1 b b b b b b b b

2 c d d d e e e
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Optimal Page Replacement
Replace page needed furthest in future
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Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b c

0 a a a a a a a a a c

1 b b b b b b b b b

2 c d d d e e e e
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Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

d

X

e

Process can use 3 frames 
(3 pages in memory)



Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b c d

0 a a a a a a a a a c c

1 b b b b b b b b b d

2 c d d d e e e e e

Faults X X X √ √ X √ √ X X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded
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X √
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Process can use 3 frames 
(3 pages in memory)



Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b c d e

0 a a a a a a a a a c c c

1 b b b b b b b b b d d

2 c d d d e e e e e e

Faults X X X X √ √ X √ √ X X √
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m
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Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a a a a a a a a d d
1 b b b b b b b b b a e
2 c c c c c c c c b b
3 d d d e e e e e c

Faults X X X X √ √ X √ √ √ X √

Pa
ge

 F
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m
es

Process can use 4 frames 
(4 pages in memory)

6 page faults

7 page faults
Process can use 3 frames 
(3 pages in memory)



FIFO Replacement

Replace pages in the order they come into memory

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a d d d e e e e e e

1 b b b a a a a a c c c

2 c c c b b b b b d d

Faults X X X X X X X √ √ X X √Pa
ge

 F
ra

m
es
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Page loaded

Process can use 3 frames 
(3 pages in memory)

9 page faults



FIFO Replacement

Replace pages in the order they come into memory

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a a a a e e e e d d
1 b b b b b b a a a a e
2 c c c c c c b b b b
3 d d d d d d c c c

Faults X X X X √ √ X X X X X X

Pa
ge

 F
ra

m
es
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Page loaded

Process can use 4 frames 
(4 pages in memory)

10 page faults

More frames —> more page faults?

Belady’s  Anomaly



Locality of Reference

If a process access a memory location, then 
it is likely that 


the same memory location is going to be accessed 
again in the near future (temporal locality) 

nearby memory locations are going to be 
accessed in the future  (spatial locality)


90% of the execution of a program is sequential


Most iterative constructs consist of a relatively small 
number of instructions
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LRU: Least Recently Used
Replace page not referenced for the longest time
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Time 0 1 2 3 4 5 6 7 8 9 10 11 12
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Process can use 4 frames 
(4 pages in memory)



LRU: Least Recently Used
Replace page not referenced for the longest time
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Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e

0 a a a a a a
1 b b b b b
2 c c c c
3 d d d

Faults X X X X √ √
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ge
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Process can use 4 frames 
(4 pages in memory)

X



LRU: Least Recently Used
Replace page not referenced for the longest time
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Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e

0 a a a a a a a
1 b b b b b b
2 c c c c e
3 d d d d

Faults X X X X √ √ X
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m
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Process can use 4 frames 
(4 pages in memory)



LRU: Least Recently Used
Replace page not referenced for the longest time
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Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a a a a a a a a a e
1 b b b b b b b b b b b
2 c c c c e e e e d d
3 d d d d d d c c c

Faults X X X X √ √ X √ √ X X X
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ge
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m
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Process can use 4 frames 
(4 pages in memory)

8 page faults



Implementing LRU

On reference: timestamp each page

On eviction: scan for oldest page

Problems:


Large page lists

Timestamps are costly


Solution: approximate LRU

after all, LRU is already an approximation! (of OPT)

Next lecture




