
Lecture 15:

Memory Management

Page Tables, and page
replacement algorithms

1

Recall: Paging
Allocate VA & PA memory in chunks of the same,
fixed size (pages and frames, respectively)

Adjacent pages in VA need not map to
contiguous frames in PA!

free frames can be tracked using a simple bitmap

0011111001111011110000 one bit/frame

no more external fragmentation!

possible internal fragmentation

when memory needs are not a multiple of a page

typical size of page/frame: 4KB to 16KB

2

Recall: Basic Paging
CPU

PTBR

o

p

p

f

f

o

3

Physical

Memory

Page Table
f

The Page Table

lives in memory

at the physical address
stored in the Page Table
Base Register

PTBR value saved/restored
in PCB on context switch

Frame

Recall: Basic goals in paging

Minimize Storage overhead

data structure overhead (the Page Table itself)

fragmentation

How large should a page be?

Fast Address translation

We need “fast” lookups on page table

Efficient sharing of physical memory

By multiple processes

4

Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Linear array: one entry for each page, maps it to a frame

Storage overheads:

Number of entries * size of entry

Number of entries = number of pages = (VAS size / page size)

Size of entry ~ log2 (PAS Size / frame size) + control bits

32-bit virtual address space, 4GB physical memory, 4KB pages = 4MB

64-bit virtual address space, 4GB physical memory, 4KB pages = 16 PB

5

Paging—second attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Multi-level page tables: store a tree

But only those nodes/edges that are required to map pages to frames

6

Multi-level Paging

Structure virtual
address space as a tree

Virtual address
p1 p2 op3

8 6 6 12

0

255

1

0

63 v

0

63

0

4K

8K

16K

p1

p2

p3

PTBR 7

If we use a tree…

Last 12 bits index into the page

page size = 212

#pages = 220 (since total memory = 4GB)

Next 6 bits index into last-level of the tree

#entries in each chunk = 26

#chunks = 214 (to account for 220 pages)

Next 6 bits index into second-last-level of the tree

#entries in each chunk = 26

#chunks = 28 (to account for 214 last-level chunks)

Next 8 bits index into first-level of the tree

#entries in each chunk = 28

#chunks = 1 (to account for 28 second-last-level
chunks)

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

26

26

26

28

28

1

32-bit, 4GB, 4KB pages Example

If we use a tree…

Last 12 bits index into the page

page size = 212

#pages = 220 (since total memory = 4GB)

Next 16 bits index into last-level of the tree

#entries in each chunk = 216

#chunks needed = 24 (to account for 220 pages)

Next 16 bits index into second-last-level of the tree

#entries in each chunk = 216

#chunks needed = 1 (to account for 24 last-level
chunk)

Next 20 bits index into first-level of the tree

#entries in each chunk = 220

#chunks = 1 (to account for 1 second-last-level
chunk)

}12 bits}16 bits}16 bits}20 bits

64-bit, 4GB, 4KB pages Example

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24

How many chunks of size 216 are
needed to hold 220 PTEs of frames
starting at 0?

220/216 = 24 = 16

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24

How many chunks of size 216 are
needed to hold pointers to 16 pink
chunks?

1

So, if each entry is 4 bytes, the PT takes
4 * (1 x 220 + 1 x 216 + 16 x 216) = 8.0625MB

Can be further reduced a bit

64-bit, 4GB, 4KB pages Example

Questions?

11

Where are we?
Storage overheads

Minimized! Using multi-level page tables.

How about address translation time?

Every new level of paging

reduces the memory overhead for computing the
mapping function…

… but increases the time necessary to perform
the mapping function

12

Caching!

Keep the results of recent virtual address to
physical address translations in a structure
called Translation Lookaside Buffer (TLB)

Speeding things up:

The TLB

CPU ≤
yes

Memory

Exception

Physical

Memory

f

PTBR

o

Page Table Base Register

p

f

f

p o

TLB miss

TLB hit

page # frame #

TLB

no

14

Access
=
=
=
=
=
=
=

≠

fp

Address Translation

with TLB

CPU

Physical

Memory

TLB Page

Table

Virtual

Address

Miss

+

Invalid Exception

Hit
Valid

Frame Frame

Physical

Address

Data

Data

Virtual

Address

Offset

15

Access TLB before accessing memory!

TLB Hit and Miss

The TLB is small; it cannot hold all PTEs

it can be fast only if it is small!

Some translations will inevitably miss the TLB

Must access memory to find the appropriate PTE

called walking the page table

incurs large performance penalty

Handling TLB Misses

Hardware-managed (e.g., x86)

The hardware does the page walk

Hardware fetches PTE and inserts it in TLB

If TLB is full, must replace another TLB entry

Done transparently to system software

Software-managed (e.g., MIPS)

Hardware raises an exception

OS does the page walk, fetches PTE, and
inserts evicts entries in TLB

Tradeoffs, Tradeoffs…
Hardware-managed TLB

+ No exception on TLB miss. Instruction just stalls

+ No extra instruction/data brought into the cache

- OS has no flexibility in deciding Page Table organization

- OS has no flexibility in TLB entry replacement policy

Software-managed TLB

+ OS can define Page Table organization

+ More flexible TLB entry replacement policies

- Slower: exception causes to flush pipeline; execute

handler; pollute cache

TLB Consistency - I

On context switch

VAs of old process should no longer be valid

Change PTBR — but what about the TLB?

19

TLB Consistency - I

On context switch

VAs of old process should no longer be valid

Change PTBR — but what about the TLB?

Option 1: Flush the TLB

1 0x0053 0x0012 R/W

PID VirtualPage PageFrame Access

TLB Entry

Ignore entries with wrong PIDs

Option 2: Add pid tag to each TLB entry

20

TLB Consistency - II

What if OS changes permissions on page?

If permissions are reduced, OS must ensure
affected TLB entries are purged

If permissions are expanded, no problem

new permissions will cause an exception and OS
will restore consistency

21

22

Virtual memory
Consider a server with 4GB memory.

What if a process has 16GB requirement?

What if we have two concurrently running processes

each having 4GB requirements?

Virtual Memory
Each process has the illusion of a large address space

2x bytes for x-bit addressing

However, physical memory is usually much smaller

and we want to run multiple processes concurrently

How do we give this illusion to multiple processes?

Virtual Memory: back every memory address with a file on disk

Page 0

Page 1
Page 2
Page 3
Page 4

Page N-1

Virtual
Memory

Page

Table

Physical Memory
Disk

Processes

execute from disk!

RAM is just another layer of cache!

L1

L2

L3

RAM

DISK

A Virtual Page can be…
Mapped (present bit set in PTE)

to a physical frame, with certain r/w/x permissions

Not mapped (present bit not set in PTE)

in some physical frame, but not currently mapped

or still in the original program file

or needing to be zero-filled (heap, BSS, stack)

or on backing store (paged or swapped out)

or not part of one of the processes’ segment

{

<latexit sha1_base64="/wh9h0KpVfAZxXT4Nq6ORXIBdBg=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkQXMz6MVjFLNAEkJPpydp0rPQ/UYIQ85eRLwo+Ef+gn/hJ9iZ6MGtoKGoqua9el4shUbHebNyS8srq2v59cLG5tb2TnF3r6WjRDHeZJGMVMejmksR8iYKlLwTK04DT/K2N7mY++1brrSIwhucxrwf0FEofMEoGum6lw6KJdd2MpD/SensHTI0BsXX3jBiScBDZJJq3XWdGPspVSiY5LNCL9E8pmxCRzzN9puRIyMNiR8p80IkmfotRwOtp4FnkgHFsf7pzcW/vG6Cfq2fijBOkIdsMchPJMGIzMuSoVCcoZwaQpkSZkPCxlRRhuYkBVPdsSsnVbfikN/kq3qrbLtVu3ZVLtXPFzeAPBzAIRyDC6dQh0toQBMY+HAPT/BsUevOerAeF9Gc9flnH77BevkAN+OKew==</latexit>

Page
Fault

Segmentation Fault!

may trigger Page Fault{

<latexit sha1_base64="/wh9h0KpVfAZxXT4Nq6ORXIBdBg=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkQXMz6MVjFLNAEkJPpydp0rPQ/UYIQ85eRLwo+Ef+gn/hJ9iZ6MGtoKGoqua9el4shUbHebNyS8srq2v59cLG5tb2TnF3r6WjRDHeZJGMVMejmksR8iYKlLwTK04DT/K2N7mY++1brrSIwhucxrwf0FEofMEoGum6lw6KJdd2MpD/SensHTI0BsXX3jBiScBDZJJq3XWdGPspVSiY5LNCL9E8pmxCRzzN9puRIyMNiR8p80IkmfotRwOtp4FnkgHFsf7pzcW/vG6Cfq2fijBOkIdsMchPJMGIzMuSoVCcoZwaQpkSZkPCxlRRhuYkBVPdsSsnVbfikN/kq3qrbLtVu3ZVLtXPFzeAPBzAIRyDC6dQh0toQBMY+HAPT/BsUevOerAeF9Gc9flnH77BevkAN+OKew==</latexit>

Handling a Page Fault
Identify page and reason

access inconsistent with segment access rights

terminate process

access a page currently on disk

does frame with the code/data already exist?

if not, allocate a frame and load page in

access of zero-initialized data (BSS) or stack

allocate a frame, initialize all bytes to zero

When a page

must be brought in…
Find a free frame

evict a page if there are no free frames

Issue disk request to fetch data for page

Move “current process” to disk queue

Context switch to new process

Update PTE when disk completes

frame number, present bit, RWX bits, etc.

Move “current process” to ready queue

When a page

must be swapped out…
Find all page table entries that refer to old page

Frame might be shared

Set each page table entry to not present (invalid)

Remove any TLB entries

“TLB Shootdown”: in multiprocessors, TLB entry
must be eliminated from the TLB of all processors

Write page back to disk, if needed

Dirty bit in PTE indicates need

Demand Paging

MIPS Style

1. TLB Miss

2. Exception to kernel

3. Page Table walk

4. Page fault (present bit

not set in Page Table)

5. Convert VA to file offset

6. Allocate page frame

(evict page if needed)

7. Initiate disk block read

into page frame

8. Disk interrupt when
DMA completes

9. Mark page as present

10. Update TLB

11. Resume process at

faulting instruction

12. TLB hit

13. Execute instruction

29

Software handling
page fault

Demand Paging:

x86 Style

1. TLB Miss

2. Page Table walk

3. Page fault (page not

present in Page Table)

4. Exception to kernel

5. Convert VA to file offset

6. Allocate page frame

(evict page if needed)

7. Initiate disk block read

into page frame

8. Disk interrupt when
DMA completes

9. Mark page as present

10. Resume process at

faulting instruction

11. TLB miss

12. Page Table walk –

success!

13. TLB updated

14. Execute instruction

30

Software handling
page fault

Page Replacement

When physical memory is full, we need to
choose a “victim” to evict

Local vs Global replacement

Local: victim chosen from frames of process
experiencing page fault

fixed allocation of frames per process

Global: victim chosen from frames allocated to
any process

variable allocation of frames per process

Goal: minimizing number of page faults

31

Page Replacement
Algorithms

Random: Pick any page to eject at random

Used mainly for comparison

FIFO: The page brought in earliest is evicted

Ignores usage

LRU: Evict page not been used the longest

Assumes past is good predictor of the future

MRU: Evict most recently used page

Good for data accessed only once, e.g., a movie

LFU: Evict least frequently used page

OPT: Belady’s algorithm

How do we pick a victim?

We want:

low page fault-rate

page faults as inexpensive as possible

We need:

a way to compare the relative performance
of different page replacement algorithms

some absolute notion of what a “good” page
replacement algorithm should accomplish

33

Comparing Page
Replacement Algorithms

Record a trace of the pages accessed by a
process

E.g. 3,1,4,2,5,2,1,2,3,4 (or c,a,d,b,e,b,a,b,c,b)

Simulate behavior of page replacement
algorithm on trace

Record number of page faults generated

34

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace

0
1

2

Faults

a

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace

0 a

1

2

Faults

a

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

b

X

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace

0 a a

1 b

2

Faults X

a

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

b

X

c

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c

0 a a a

1 b b

2 c

Faults X X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X X

d a b e a b c d e

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d

0 a a a a

1 b b b

2 c d

Faults X X X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

a

√
Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a

0 a a a a a

1 b b b b

2 c d d

Faults X X X √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

b

√
Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b

0 a a a a a a

1 b b b b b

2 c d d d

Faults X X X √ √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

e

X

 a b c d e

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e

0 a a a a a a a

1 b b b b b b

2 c d d d e

Faults X X X √ √ X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

a

√
Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a

0 a a a a a a a a

1 b b b b b b b

2 c d d d e e

Faults X X X √ √ X √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

b

√
Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b

0 a a a a a a a a a

1 b b b b b b b b

2 c d d d e e e

Faults X X X √ √ X √ √

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

c

X

 d e

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b c

0 a a a a a a a a a c

1 b b b b b b b b b

2 c d d d e e e e

Faults X X X √ √ X √ √ X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X

d

X

e

Process can use 3 frames
(3 pages in memory)

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b c d

0 a a a a a a a a a c c

1 b b b b b b b b b d

2 c d d d e e e e e

Faults X X X √ √ X √ √ X X

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Pa
ge

 F
ra

m
es

X √

e

Process can use 3 frames
(3 pages in memory)

Optimal Page Replacement
Replace page needed furthest in future

Page loaded

Time 0 1 2 3 4 5 6 7 8 9 10 11 12
Trace a b c d a b e a b c d e

0 a a a a a a a a a c c c

1 b b b b b b b b b d d

2 c d d d e e e e e e

Faults X X X X √ √ X √ √ X X √

Pa
ge

 F
ra

m
es

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a a a a a a a a d d
1 b b b b b b b b b a e
2 c c c c c c c c b b
3 d d d e e e e e c

Faults X X X X √ √ X √ √ √ X √

Pa
ge

 F
ra

m
es

Process can use 4 frames
(4 pages in memory)

6 page faults

7 page faults
Process can use 3 frames
(3 pages in memory)

FIFO Replacement

Replace pages in the order they come into memory

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a d d d e e e e e e

1 b b b a a a a a c c c

2 c c c b b b b b d d

Faults X X X X X X X √ √ X X √Pa
ge

 F
ra

m
es

48

Page loaded

Process can use 3 frames
(3 pages in memory)

9 page faults

FIFO Replacement

Replace pages in the order they come into memory

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a a a a e e e e d d
1 b b b b b b a a a a e
2 c c c c c c b b b b
3 d d d d d d c c c

Faults X X X X √ √ X X X X X X

Pa
ge

 F
ra

m
es

49

Page loaded

Process can use 4 frames
(4 pages in memory)

10 page faults

More frames —> more page faults?

Belady’s Anomaly

Locality of Reference

If a process access a memory location, then
it is likely that

the same memory location is going to be accessed
again in the near future (temporal locality)

nearby memory locations are going to be
accessed in the future (spatial locality)

90% of the execution of a program is sequential

Most iterative constructs consist of a relatively small
number of instructions

50

LRU: Least Recently Used
Replace page not referenced for the longest time

51

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b

0 a a a a a a
1 b b b b b
2 c c c c
3 d d d

Faults X X X X √ √

Pa
ge

 F
ra

m
es

Process can use 4 frames
(4 pages in memory)

LRU: Least Recently Used
Replace page not referenced for the longest time

52

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e

0 a a a a a a
1 b b b b b
2 c c c c
3 d d d

Faults X X X X √ √

Pa
ge

 F
ra

m
es

Process can use 4 frames
(4 pages in memory)

X

LRU: Least Recently Used
Replace page not referenced for the longest time

53

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e

0 a a a a a a a
1 b b b b b b
2 c c c c e
3 d d d d

Faults X X X X √ √ X

Pa
ge

 F
ra

m
es

Process can use 4 frames
(4 pages in memory)

LRU: Least Recently Used
Replace page not referenced for the longest time

54

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Trace a b c d a b e a b c d e

0 a a a a a a a a a a a e
1 b b b b b b b b b b b
2 c c c c e e e e d d
3 d d d d d d c c c

Faults X X X X √ √ X √ √ X X X

Pa
ge

 F
ra

m
es

Process can use 4 frames
(4 pages in memory)

8 page faults

Implementing LRU

On reference: timestamp each page

On eviction: scan for oldest page

Problems:

Large page lists

Timestamps are costly

Solution: approximate LRU

after all, LRU is already an approximation! (of OPT)

Next lecture

