
Lecture 14:

Memory Management

Paging, and Page Tables

1

Recall: Address
Translation

A function that maps
into a corresponding

a486d9

5e3a07

Virtual Physical

Advantages:

protection

relocation

data sharing

multiplexing

〈pid, virtual address〉
physical address

pi
function implemented through
a combination of hw and sw

2

Recall: what we care about
in address translation
How to perform the mapping efficiently?

So that it can be represented concisely?

So that it can be computed quickly?

So that it makes efficient use of the limited
physical memory?

So that multiple processes coexist in physical
memory while guaranteeing isolation?

So that it decouples the size of the virtual and
physical addresses?

3

Recall: Technique 1:

Base and bound

Pros:

Space-efficient address translation

Only need 2 registers per process

Fast address translation

Simple operations

Cons:

Wastes a lot of space (forces continuity)

Does not work if address space > physical memory

4

Base & Bound registers to
each segment

each segment is
independently mapped to a
set of contiguous addresses
in physical memory

no need to map unused
virtual addresses

Segment Base Bound

Code 10K 2K

Stack 28 2K

Heap 35K 3K

Program Code12KB
10KB

(not to scale)

38KB
Heap

35KB

64KB

0KB

5

free

free

free
Stack

28KB
30KB

Recall: Technique 2:

Segments + Base and bound

Pros: still space efficient and fast

segment table: store base and bound registers for the segment

stored in memory, at an address pointed to by a
Segment Table Base Register (STBR)

process’ STBR value stored in the PCB

2 registers per segment (fairly space-efficient)

Address Translation:

first find the segment (using STBR),

then use base and bound to perform address translation

6

Recall: Technique 2:

Segments + Base and bound

Challenge?

Contiguous addresses for each segment

“Fitting” segments into physical memory

Many segments & processes, different sizes

Many strategies to fit segment into free
memory

First Fit: first big-enough hole

Next Fit: Like First Fit, but starting from
where you left off

Best Fit: smallest big-enough hole

Worst Fit: largest big-enough hole

OS

7

Recall: Technique 2:

Segments + Base and bound

Challenge?

Contiguous addresses for each segment

“Fitting” segments into physical memory

Many segments & processes, different sizes

External fragmentation

Can be avoided using compaction

Heavy-weight

Does not allow segments to grow

OS

8

Recall: Technique 2:

Segments + Base and bound

Challenge?

Contiguous addresses for each segment

“Fitting” segments into physical memory

Many segments & processes, different sizes

External fragmentation

Can be avoided using compaction

Heavy-weight

Does not allow segments to grow

OS

9

Recall: Technique 2:

Segments + Base and bound

Recall: Paging
Allocate VA & PA memory in chunks of the same,
fixed size (pages and frames, respectively)

Adjacent pages in VA need not map to
contiguous frames in PA!

free frames can be tracked using a simple bitmap

0011111001111011110000 one bit/frame

no more external fragmentation!

possible internal fragmentation

when memory needs are not a multiple of a page

typical size of page/frame: 4KB to 16KB

10

Recall: Paging & Page Tables

}}
11

To access a byte

extract page number

map that page number into a frame
number using a page table

Note: not all pages may be mapped
to frames

extract offset

access byte at offset in frame

8

4
0
6
1
2

Page Table

0
1
2
3
4

220 -1

.

.

.

.

.

.

.

.

.

.

.

p (20 bits) o (12 bits)

Recall: Basic Paging
CPU

PTBR

o

p

p

f

f

o

12

Physical

Memory

Page Table
f

The Page Table

lives in memory

at the physical address
stored in the Page Table
Base Register

PTBR value saved/restored
in PCB on context switch

Frame

CPU

PTBR

o

p

p

f

f

o

13

Physical

Memory

Page Table
f

The Page Table

lives in memory

at the physical address
stored in the Page Table
Base Register

PTBR value saved/restored
in PCB on context switch

Frame Access

Recall: Basic Paging

Recall: Page Table Entries

Frame number

Valid/Invalid (Present) bit

Set if entry stores a valid mapping.
If not, and accessed, page fault

Referenced bit

Set if page has been referenced

Modified bit

Set if page has been modified

Protection bits (R/W/X)

4 i
7 i
2 i
0 i
7 v
6 i
5 v
4 i
2 i
0 i
3 v
4 v
0 v
6 v
1 v
2 v

Page table

11
2
9
4
5
0
1
30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Physical

memory}

Protection

bits (R/W/X)

Referenced

Modified

Valid/

invalid

14
0

1

2

3

4

5

6

7

Present Referenced

Modified

Protection

AccessFrame

Other

Other

Questions?

15

Basic goals in paging
Minimize Storage overhead

data structure overhead (the Page Table itself)

fragmentation

How large should a page be?

Fast Address translation

We need “fast” lookups on page table

Efficient sharing of physical memory

By multiple processes

16

Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Page Table maps each page to a frame

Storage overheads:

Number of entries = size of virtual address space / page size

Size of entry

enough bits to identify physical page (log2 (PA_Size / frame size))

should include control bits (present, dirty, referenced, etc)

usually word or byte aligned

32-bit virtual address space, 4GB physical memory, 4KB pages

(232/212 entries * sizeofEntry)

sizeofEntry = 32 bits = 4 bytes

log2 (PA_Size/frame size)+7 control bits + byte aligned = log2 (232/212) + 7 +? = 32

4MB
17

Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Page Table maps each page to a frame

Storage overheads:

32-bit virtual address space, 4GB physical memory, 4KB pages

(232/212 entries * sizeofEntry)

sizeofEntry = 32 bits = 4 bytes

log2 (PA_Size/frame size)+7 control bits + byte aligned = log2 (232/212) + 7 +? = 32

4MB

64-bit virtual address space, 4GB physical memory, 4KB pages

(264/212 entries * sizeofEntry)

sizeofEntry = 32 bits = 4 bytes

log2 (PA_Size/frame size)+7 control bits + byte aligned = log2 (232/212) + 7 +? = 32

4*252 bytes >> 64GB 18

Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Page Table maps each page to a frame

Space overhead

With a 64-bit address space, size of page table can be huge

Insight: page table size dependent on virtual address space

wrong design

page table size should depend on physical address space

Time overhead

Accessing data now requires two memory accesses

One to access page table (no longer fits in cache)

Another one to find mapped frame

19

Reducing the Storage
Overhead of Page Tables

Size of the page table
with 64-bit virtual
addresses and 4KB page
sizes is large

Good news

most of the virtual
address space is
unused

Use a better data
structure to express
the Page Table

a tree!

 Example

32 bit address space

4KB pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated

pages
VP 9215

unallocated

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page

for stack

20

Page Table

Reducing the Storage
Overhead of Page Tables

Size of the page table
with 64-bit virtual
addresses and 4KB page
sizes is large

Good news

most of the virtual
address space is
unused

Use a better data
structure to express
the Page Table

a tree!

 Example

32 bit address space

4Kb pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated

pages
VP 9215

unallocated

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page

for stack

21

Page Table

PTE 0
. . .

PTE 1023

PTE 0
PTE 1
PTE 2

PTE 1023

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

Reducing the Storage
Overhead of Page Tables

Size of the page table
with 64-bit virtual
addresses and 4KB page
sizes is large

Good news

most of the virtual
address space is
unused

Use a better data
structure to express
the Page Table

a tree!

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 1023

1023 null

PTEs

 Example

32 bit address space

4Kb pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated

pages
VP 9215

unallocated

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page

for stack

22

PTE 0
PTE 1

PTE 2 (null)
PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

(9-1024)

null PTEs

Page Table

Multi-level Paging

Structure virtual
address space as a tree

Virtual address of a SPARC
p1 p2 op3

8 6 6 12

0

255

1

0

63 v

0

63

0

4K

8K

16K

p1

p2

p3

PTBR 23

What is the page size?

}12 bits}6 bits}6 bits}8 bits

24

32-bit, 4GB, Example

What is the page size?

}12 bits}6 bits}6 bits}8 bits

Page size is 4KB (212)
What is the Page Table size for a process that uses
contiguous 4KB of its VAS starting at address 0? [Assume
each PTE is 4 bytes]

if we used a linear representation of the page table:

25

32-bit, 4GB, Example

What is the page size?

}12 bits}6 bits}6 bits}8 bits

Page size is 4KB (212)
What is the Page Table size for a process that uses
contiguous 4KB of its VAS starting at address 0? [Assume
each PTE is 4 bytes]

if we used a linear representation of the page table:

Page Table has 220 entries

26

32-bit, 4GB, Example

What is the page size?

}12 bits}6 bits}6 bits}8 bits

Page size is 4KB (212)
What is the Page Table size for a process that uses
contiguous 4KB of its VAS starting at address 0? [Assume
each PTE is 4 bytes]

if we used a linear representation of the page table:

Page Table has 220 entries

PT Size: 220 x 4 bytes = 222 bytes = 4MB

27

32-bit, 4GB, Example

What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT
in a sequence of chunks, each with 26
entries

}12 bits}6 bits}6 bits}8 bits

220220

32-bit, 4GB, Example

What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT
in a sequence of chunks, each with 26
entries

}12 bits}6 bits}6 bits}8 bits

220

26

26

26

26

26

26

32-bit, 4GB, Example

What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT
in a sequence of chunks, each with 26
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

214

…which we’ll partition in chunks of 26

entries

32-bit, 4GB, Example

What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT
in a sequence of chunks, each with 26
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

…which we’ll partition in chunks of 26

entries

26

26

26

32-bit, 4GB, Example

What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT
in a sequence of chunks, each with 26
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

…which we’ll partition in chunks of 26

entries

26

26

26
We’ll need an index of 28

32-bit, 4GB, Example

What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT
in a sequence of chunks, each with 26
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

…which we’ll partition in chunks of 26

entries

26

26

26
We’ll need an index of 28

28

28

1

32-bit, 4GB, Example

Are we better off?

The number of PT entries now is
(26x214)+(28x26)+28 > 220 !!

Slightly larger than 4MB

What we needed for a single-level page table

But….

We can now exploit “sparsity” in virtual
address space

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

26

26

26

28

28

1

32-bit, 4GB, Example

64-bit, 4GB, Example

Naïvely storing page table:

The number of PT entries now is
(216x236)+(216x220)+220 >> 220 !!

We don’t need all the entries

Store only that part of the tree
that is needed

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24How many chunks of size 216 are
needed to hold 220 PTEs of frames
starting at 0?

220/216 = 24 = 16

64-bit, 4GB, Example

How many chunks of size 216 are
needed to hold 220 PTEs of frames
starting at 0?

220/216 = 24 = 16

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24

How many chunks of size 216 are
needed to hold pointers to 16 pink
chunks?

1

64-bit, 4GB, Example

How many chunks of size 216 are
needed to hold 220 PTEs of frames
starting at 0?

220/216 = 24 = 16

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24

How many chunks of size 216 are
needed to hold pointers to 16 pink
chunks?

1

So, if each entry is 4 bytes, the PT takes
4 * (1 x 220 + 1 x 216 + 16 x 220) < 68.25MB

Can be further reduced a bit

64-bit, 4GB, Example

Where are we?
Storage overheads

Minimized! Using multi-level page tables.

How about address translation time?

Every new level of paging

reduces the memory overhead for computing the
mapping function…

… but increases the time necessary to perform
the mapping function

39

Caching!

Keep the results of recent virtual address to
physical address translations in a structure
called Translation Lookaside Buffer (TLB)

Speeding things up:

The TLB

CPU ≤
yes

Memory

Exception

Physical

Memory

f

PTBR

o

Page Table Base Register

p

f

f

p o

TLB miss

TLB hit

page # frame #

TLB

no

41

Access
=
=
=
=
=
=
=

≠

fp

Address Translation

with TLB

CPU

Physical

Memory

TLB Page

Table

Virtual

Address

Miss

+

Invalid Exception

Hit
Valid

Frame Frame

Physical

Address

Data

Data

Virtual

Address

Offset

42

Access TLB before accessing memory!

Hit and Miss

The TLB is small; it cannot hold all PTEs

it can be fast only if it is small!

Some translations will inevitably miss the TLB

Must access memory to find the appropriate PTE

called walking the page table

incurs large performance penalty

Handling TLB Misses

Hardware-managed (e.g., x86)

The hardware does the page walk

Hardware fetches PTE and inserts it in TLB

If TLB is full, must replace another TLB entry

Done transparently to system software

Software-managed (e.g., MIPS)

Hardware raises an exception

OS does the page walk, fetches PTE, and
inserts evicts entries in TLB

Tradeoffs, Tradeoffs…
Hardware-managed TLB

+ No exception on TLB miss. Instruction just stalls

+ No extra instruction/data brought into the cache

- OS has no flexibility in deciding Page Table organization

- OS has no flexibility in TLB entry replacement policy

Software-managed TLB

+ OS can define Page Table organization

+ More flexible TLB entry replacement policies

- Slower: exception causes to flush pipeline; execute

handler; pollute cache

TLB Consistency - I

On context switch

VAs of old process should no longer be valid

Change PTBR — but what about the TLB?

46

TLB Consistency - I

On context switch

VAs of old process should no longer be valid

Change PTBR — but what about the TLB?

Option 1: Flush the TLB

1 0x0053 0x0012 R/W

PID VirtualPage PageFrame Access

TLB Entry

Ignore entries with wrong PIDs

Option 2: Add pid tag to each TLB entry

47

TLB Consistency - II

What if OS changes permissions on page?

If permissions are reduced, OS must ensure
affected TLB entries are purged

If permissions are expanded, no problem

new permissions will cause an exception and OS
will restore consistency

48

49

