
Lecture 14:

Memory Management


Paging, and Page Tables
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Recall: Address 
Translation

A function that maps                          
into a corresponding   

a486d9

5e3a07

Virtual Physical

Advantages:

protection

relocation

data sharing

multiplexing


〈pid, virtual address〉
physical address

pi
function implemented through 
a combination of hw and sw
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Recall: what we care about 
in address translation
How to perform the mapping efficiently?


So that it can be represented concisely?

So that it can be computed quickly?

So that it makes efficient use of the limited 
physical memory?

So that multiple processes coexist in physical 
memory while guaranteeing isolation?

So that it decouples the size of the virtual and 
physical addresses?
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Recall: Technique 1: 

Base and bound

Pros:

Space-efficient address translation


Only need 2 registers per process

Fast address translation


Simple operations

Cons:


Wastes a lot of space (forces continuity)

Does not work if address space > physical memory
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Base & Bound registers to 
each segment


each segment is 
independently mapped to a 
set of contiguous addresses 
in physical memory


no need to map unused 
virtual addresses

Segment Base Bound

Code 10K 2K

Stack 28 2K

Heap 35K 3K

Program Code12KB
10KB

(not to scale)

38KB
Heap

35KB

64KB

0KB
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free

free

free
Stack

28KB
30KB

Recall: Technique 2: 

Segments + Base and bound



Pros: still space efficient and fast

segment table: store base and bound registers for the segment 


stored in memory, at an address pointed to by a 
Segment Table Base Register (STBR)

process’ STBR value stored in the PCB


2 registers per segment (fairly space-efficient)


Address Translation: 

first find the segment (using STBR), 

then use base and bound to perform address translation
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Recall: Technique 2: 

Segments + Base and bound



Challenge?

Contiguous addresses for each segment

“Fitting” segments into physical memory

Many segments & processes, different sizes


Many strategies to fit segment into free 
memory


First Fit: first big-enough hole

Next Fit: Like First Fit, but starting from 
where you left off

Best Fit: smallest big-enough hole

Worst Fit: largest big-enough hole

OS
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Recall: Technique 2: 

Segments + Base and bound



Challenge?

Contiguous addresses for each segment

“Fitting” segments into physical memory

Many segments & processes, different sizes


External fragmentation

Can be avoided using compaction


Heavy-weight

Does not allow segments to grow

OS

8

Recall: Technique 2: 

Segments + Base and bound



Challenge?

Contiguous addresses for each segment

“Fitting” segments into physical memory

Many segments & processes, different sizes


External fragmentation

Can be avoided using compaction


Heavy-weight

Does not allow segments to grow

OS
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Recall: Technique 2: 

Segments + Base and bound



Recall: Paging
Allocate VA & PA memory in chunks of the same, 
fixed size (pages and frames, respectively)

Adjacent pages in VA need not map to 
contiguous frames in PA!


free frames can be tracked using a simple bitmap

0011111001111011110000 one bit/frame


no more external fragmentation!

possible internal fragmentation


when memory needs are not a multiple of a page 

typical size of page/frame: 4KB to 16KB
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Recall: Paging & Page Tables

}}
11

To access a byte

extract page number

map that page number into a frame 
number using a page table


Note: not all pages may be mapped 
to frames


extract offset

access byte at offset in frame
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Recall: Basic Paging
CPU

PTBR

o

p

p

f

f 

o
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Physical

Memory

Page Table
f 

The Page Table

lives in memory

at the physical address 
stored in the Page Table 
Base Register

PTBR value saved/restored 
in PCB on context switch

Frame



CPU

PTBR

o

p

p

f

f 

o
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Physical

Memory

Page Table
f 

The Page Table

lives in memory

at the physical address 
stored in the Page Table 
Base Register

PTBR value saved/restored 
in PCB on context switch

Frame Access

Recall: Basic Paging



Recall: Page Table Entries

Frame number

Valid/Invalid (Present) bit


Set if entry stores a valid mapping. 
If not, and accessed, page fault


Referenced bit

Set if page has been referenced


Modified bit

Set if page has been modified


Protection bits (R/W/X)

4 i
7 i
2 i
0 i
7 v
6 i
5 v
4 i
2 i
0 i
3 v
4 v
0 v
6 v
1 v
2 v

Page table

11
2
9
4
5
0
1
30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Physical 

memory}

Protection

bits (R/W/X)

Referenced

Modified

Valid/

invalid
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0

1

2

3

4

5

6

7

Present Referenced

Modified

Protection

AccessFrame

Other

Other



Questions?
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Basic goals in paging
Minimize Storage overhead 


data structure overhead (the Page Table itself)

fragmentation


How large should a page be?


Fast Address translation

We need “fast” lookups on page table


Efficient sharing of physical memory

By multiple processes
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Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Page Table maps each page to a frame

Storage overheads:


Number of entries = size of virtual address space / page size

Size of entry


enough bits to identify physical page (log2 (PA_Size / frame size))

should include control bits (present, dirty, referenced, etc)

usually word or byte aligned


32-bit virtual address space, 4GB physical memory, 4KB pages

(232/212 entries * sizeofEntry)

sizeofEntry = 32 bits = 4 bytes


log2 (PA_Size/frame size)+7 control bits + byte aligned = log2 (232/212) + 7 +? = 32


4MB
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Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Page Table maps each page to a frame

Storage overheads:


32-bit virtual address space, 4GB physical memory, 4KB pages

(232/212 entries * sizeofEntry)

sizeofEntry = 32 bits = 4 bytes


log2 (PA_Size/frame size)+7 control bits + byte aligned = log2 (232/212) + 7 +? = 32


4MB

64-bit virtual address space, 4GB physical memory, 4KB pages


(264/212 entries * sizeofEntry)

sizeofEntry = 32 bits = 4 bytes


log2 (PA_Size/frame size)+7 control bits + byte aligned = log2 (232/212) + 7 +? = 32


4*252 bytes >> 64GB 18



Paging—first attempt
Divide virtual address space into fixed-sized pages (e.g., 4KB)

Page Table maps each page to a frame

Space overhead


With a 64-bit address space, size of page table can be huge

Insight: page table size dependent on virtual address space 


wrong design

page table size should depend on physical address space


Time overhead

Accessing data now requires two memory accesses


One to access page table (no longer fits in cache)

Another one to find mapped frame

19



Reducing the Storage 
Overhead of Page Tables

Size of the page table 
with 64-bit virtual 
addresses and 4KB page 
sizes is large

Good news


most of the virtual 
address space is 
unused


Use a better data 
structure to express 
the Page Table


a tree!

   Example

32 bit address space

4KB pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated


pages
VP 9215

unallocated 

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page 


for stack
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Page Table



Reducing the Storage 
Overhead of Page Tables

Size of the page table 
with 64-bit virtual 
addresses and 4KB page 
sizes is large

Good news


most of the virtual 
address space is 
unused


Use a better data 
structure to express 
the Page Table


a tree!

   Example

32 bit address space

4Kb pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated


pages
VP 9215

unallocated 

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page 


for stack
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Page Table

PTE 0
. . .

PTE 1023

PTE 0
PTE 1
PTE 2

PTE 1023

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023



Reducing the Storage 
Overhead of Page Tables

Size of the page table 
with 64-bit virtual 
addresses and 4KB page 
sizes is large

Good news


most of the virtual 
address space is 
unused


Use a better data 
structure to express 
the Page Table


a tree!

PTE 0
. . .

PTE 1023

PTE 0
. . .

PTE 1023

PTE 1023

1023 null

PTEs

   Example

32 bit address space

4Kb pages

4 bytes PTE

VP 0
. . .

VP 1023
VP 1024

. . .
VP 2047

Gap

1023

unallocated


pages
VP 9215

unallocated 

pages

} 2K pages

code/data

}6K pages

unallocated

1023 pages

unallocated}
1 page 


for stack
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PTE 0
PTE 1

PTE 2 (null)
PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

(9-1024)

null PTEs

Page Table



Multi-level Paging

Structure virtual 
address space as a tree

Virtual address of a SPARC
p1 p2 op3

8 6 6 12

0

255

1

0

63 v

0

63

0

4K

8K

16K

p1

p2

p3

PTBR 23



What is the page size?

}12 bits}6 bits}6 bits}8 bits

24

32-bit, 4GB, Example



What is the page size?

}12 bits}6 bits}6 bits}8 bits

Page size is 4KB (212)
What is the Page Table size for a process that uses 
contiguous 4KB of its VAS starting at address 0? [Assume 
each PTE is 4 bytes]


if we used a linear representation of the page table:
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32-bit, 4GB, Example



What is the page size?

}12 bits}6 bits}6 bits}8 bits

Page size is 4KB (212)
What is the Page Table size for a process that uses 
contiguous 4KB of its VAS starting at address 0? [Assume 
each PTE is 4 bytes]


if we used a linear representation of the page table:

Page Table has 220 entries 
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32-bit, 4GB, Example



What is the page size?

}12 bits}6 bits}6 bits}8 bits

Page size is 4KB (212)
What is the Page Table size for a process that uses 
contiguous 4KB of its VAS starting at address 0? [Assume 
each PTE is 4 bytes]


if we used a linear representation of the page table:

Page Table has 220 entries

PT Size: 220 x 4 bytes = 222 bytes = 4MB
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32-bit, 4GB, Example



What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT 
in a sequence of chunks, each with 26 
entries

}12 bits}6 bits}6 bits}8 bits

220220

32-bit, 4GB, Example



What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT 
in a sequence of chunks, each with 26 
entries

}12 bits}6 bits}6 bits}8 bits

220

26

26

26

26

26

26

32-bit, 4GB, Example



What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT 
in a sequence of chunks, each with 26 
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

214

…which we’ll partition in chunks of 26 

entries

32-bit, 4GB, Example



What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT 
in a sequence of chunks, each with 26 
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

…which we’ll partition in chunks of 26 

entries

26

26

26

32-bit, 4GB, Example



What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT 
in a sequence of chunks, each with 26 
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

…which we’ll partition in chunks of 26 

entries

26

26

26
We’ll need an index of 28

32-bit, 4GB, Example



What is we use a tree?

We still need to account for 220 pages…

…but we are going to partition the PT 
in a sequence of chunks, each with 26 
entries

we’ll need an index with 214 entries…

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

…which we’ll partition in chunks of 26 

entries

26

26

26
We’ll need an index of 28

28

28

1

32-bit, 4GB, Example



Are we better off?

The number of PT entries now is    
(26x214)+(28x26)+28 > 220 !!

Slightly larger than 4MB


What we needed for a single-level page table

But….


We can now exploit “sparsity” in virtual 
address space

}12 bits}6 bits}6 bits}8 bits

220214

26

26

26

26

26

26

26

26

26

28

28

1

32-bit, 4GB, Example



64-bit, 4GB, Example

Naïvely storing page table:

The number of PT entries now is    
(216x236)+(216x220)+220 >> 220 !!


We don’t need all the entries

Store only that part of the tree 
that is needed

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1



}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>

24How many chunks of size 216 are 
needed to hold 220 PTEs of frames 
starting at 0?


220/216 = 24 = 16 

64-bit, 4GB, Example



How many chunks of size 216 are 
needed to hold 220 PTEs of frames 
starting at 0?


220/216 = 24 = 16   

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>
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How many chunks of size 216 are 
needed to hold pointers to 16 pink 
chunks? 

1

64-bit, 4GB, Example



How many chunks of size 216 are 
needed to hold 220 PTEs of frames 
starting at 0?


220/216 = 24 = 16  

}12 bits}16 bits}16 bits}20 bits

220236

216

216

216

216

216

216

216

216

216

220

220

1 }

<latexit sha1_base64="DgTjNo8eWaY64YroNcE7tZ5tO2g=">AAAB33icdVDJSgNBFHwTtxi3qEcvjUHwNMwkIeZm0IvHKGaBJISeTk/SpGeh+40QQs5eRLwo+Ef+gn/hJ9iZ6CEuBQ1FVTXv1fNiKTQ6zruVWVldW9/Ibua2tnd29/L7B00dJYrxBotkpNoe1VyKkDdQoOTtWHEaeJK3vPHl3G/dcaVFFN7iJOa9gA5D4QtG0Ug33Vk/X3BtJwX5nxTOPyBFvZ9/6w4ilgQ8RCap1h3XibE3pQoFk3yW6yaax5SN6ZBP0/1m5MRIA+JHyrwQSaou5Wig9STwTDKgONI/vbn4l9dJ0K/2piKME+QhWwzyE0kwIvOyZCAUZygnhlCmhNmQsBFVlKE5Sc5Ud+xSpeyWHPKbfFdvFm23bFevi4XaxeIGkIUjOIZTcOEManAFdWgAAx8e4BleLGrdW4/W0yKasb7+HMISrNdPOteKfQ==</latexit>
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How many chunks of size 216 are 
needed to hold pointers to 16 pink 
chunks? 

1

So, if each entry is 4 bytes, the PT takes
4 * (1 x 220 + 1 x 216 + 16 x 220) < 68.25MB

Can be further reduced a bit

64-bit, 4GB, Example



Where are we?
Storage overheads


Minimized! Using multi-level page tables.


How about address translation time?

Every new level of paging


reduces the memory overhead for computing the 
mapping function…


… but increases the time necessary to perform 
the mapping function 
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Caching!

Keep the results of recent virtual address to 
physical address translations in a structure 
called Translation Lookaside Buffer (TLB)



Speeding things up: 

The TLB

CPU ≤
yes

Memory

Exception

Physical

Memory

f

PTBR

o

Page Table Base Register

p

f

f 

p o

TLB miss

TLB hit

page # frame #

TLB

no

41

Access
=
=
=
=
=
=
=

≠

fp



Address Translation  

with TLB

CPU

Physical

Memory

TLB Page

Table

Virtual 

Address

Miss

+

Invalid Exception

Hit
Valid

Frame Frame

Physical

Address

Data

Data

Virtual 

Address

Offset
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Access TLB before accessing memory!



Hit and Miss

The TLB is small; it cannot hold all PTEs

it can be fast only if it is small!


Some translations will inevitably miss the TLB


Must access memory to find the appropriate PTE


called walking the page table


incurs large performance penalty 



Handling TLB Misses

Hardware-managed (e.g., x86)

The hardware does the page walk

Hardware fetches PTE and inserts it in TLB


If TLB is full, must replace another TLB entry

Done transparently to system software


Software-managed (e.g., MIPS)

Hardware raises an exception

OS does the page walk, fetches PTE, and 
inserts evicts entries in TLB



Tradeoffs, Tradeoffs…
Hardware-managed TLB

+ No exception on TLB miss. Instruction just stalls

+ No extra instruction/data brought into the cache

- OS has no flexibility in deciding Page Table organization

- OS has no flexibility in TLB entry replacement policy


Software-managed TLB

+ OS can define Page Table organization

+ More flexible TLB entry replacement policies  

- Slower: exception causes to flush pipeline; execute 

handler; pollute cache  



TLB Consistency - I

On context switch

VAs of old process should no longer be valid


Change PTBR — but what about the TLB?
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TLB Consistency - I

On context switch

VAs of old process should no longer be valid


Change PTBR — but what about the TLB?

Option 1: Flush the TLB

1 0x0053 0x0012 R/W

PID VirtualPage PageFrame Access

TLB Entry

Ignore entries with wrong PIDs

Option 2: Add pid tag to each TLB entry
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TLB Consistency - II

What if OS changes permissions on page?

If permissions are reduced, OS must ensure 
affected TLB entries are purged


If permissions are expanded, no problem

new permissions will cause an exception and OS 
will restore consistency 
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