Lecture 12:
Memory Management

Address space, Address translation, Segments

Abstraction
IS our Business

® What I have
o A single (or a finite number) of CPUs

o Many programs I would like to run

® What I want: a Thread

o Each program has full control of one or more
CPUs

Abstraction
IS our Business

@ What I have
0 A certain amount of physical memory

0 Multiple programs I would like to run

» together, they may need more than the available physical memory

@ What I want: an Address Space

0 Each program has as much memory as the machines
architecture will allow to name

o All for itself

Address Space

@ Set of all names used to identify and
manipulate unique instances of a given resource

o memory locations (determined by the size of the
machines word)

» for 32-bit-register machine, the address space
goes from 0xO00000000 to OxFFFFFFFF

o memory locations (determined by the number of
memory banks mounted on the machine)

0 phone numbers (XXX) (YYY-YYYY)

o colors: R (8 bits) + G (8 bits) + B (8 bits)

A

Virtual Address Space:
An Abstraction for Memory

OxFFFFFFFF
® Virtual addresses start at O *

@ Heap and stack can be placed far
away from each other, so they can
nicely grow

® Addresses are all contiguous

@ Size is independent of physical 1
memory on the machine

O0x00000000

Physical Address Space:
How memory actually looks

@ Processes loaded in memory at some 0
memory location

o virtual address O is not loaded at ////}%

physical address O code

Process 2 data,

@ Mulfiple processes may be loaded in ,//////Z//,f////////
memory at the same time, and vyet... i

o ode,

@ ..physical memory may be foo small Process 1 da
to hold even a single virtual address code
gl] Process 3 data,

space in its entirety . s
7

77827

o 64-bit, anyone? 51oK Wi

Address Translation

@ A function that maps (pid, virtual address)
intfo a corresponding physical address
Virtual Physical

function implemented through
a combination of hw and sw

Advantages:

protection
relocation
data sharing
multiplexing

5e3a07

Q 0 @ O

v

Address Translation,
Conceptually

(2

Virtual
Address ;
@ --------------------- ----> Translati-ion Invalid -------------------------- > Ralse \
Exception

A Valid ;
\ T Who does Ehis?)
Dat ' 1
é > Physical

Physical Memory

Addr

\ 4
Data

Tt T T (T Uttt e e (T T T T T i T e T I e e T T

Memory Management Unit
(MMU)

® Hardware device

Motorola
68000

0 Maps virtual addresses
to physical addresses

@ User process
0 deals with virtual addresses

0O never sees the physical address

@ Physical memory
0 deals with physical addresses

O never sees the virtual address

Protection

® The functions used by different processes map their
virtual addresses to disjoint ranges of physical addresses

Relocation

@ The range of the function used by a process can
change over time

11

Relocation

® The range of the function used by a process
can change over time

@ The same physical address can
map over time fo different
physical addresses

o or the mapping can be (temporarily) undefined

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

13

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

14

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

15

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

16

Multiplexing

@ The set of virtual addresses that map to a
given range of physical addresses can change
over time

17

Data Sharing

® Map different virtual addresses of different
processes to the same physical address

5e3a07

Contiguity

@ Contiguous virtual addresses need not map to
contiguous physical addresses

19

Contiguity

@ Contiguous virtual addresses need not map to
contiguous physical addresses

The Identity Mapping

@ Map each virtual address onto the Max
identical physical address

o Virtual and physical address spaces
have the same size

o Run a single program at a time
» OS can be a simple library

» very early computers

@ Friendly amendment: leave some of
the physical address space for the OS

0 Use loader to relocate process OS

» early PCs
21

More sophisticated
address translation

@ How to perform the mapping efficiently?

o So that it can be represented concisely?
o So that it can be computed quickly?

o So that it makes efficient use of the limited
physical memory?

o So that multiple processes coexist in physical
memory while guaranteeing isolation?

o So that it decouples the size of the virtual and
physical addresses?

@ Ask hardware for help!

22

Exception

Physical
~ Address

Virtual

Base & Bound 0=

Bo(xnd Base

@ Goal: let multiple processes coexist
in memory while guaranteeing isolation

® Needed hardware
o two registers: Base and Bound (a.k.a. Limit)

o Stored in the PCB

@ Mapping
O pa = va + Base

» as long as O < va < Bound

0 On context switch, change B&B (privileged instruction)

23

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P>: Base = 500; Bound = 400
Memory
Exception
1300 ==
1000 —F
Virtual Physical :
address address
Bound Base
Register 24Register 0

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P>: Base = 500; Bound = 400
Memory
Exception
1300 ==
1000 —F
Virtual Physical :
address address
300 1000
Bound Base
Register 2sRegister 0

Base & Bound

MAXsys
@ P;: Base = 1000; Bound = 300
@ P>: Base = 500; Bound = 400
Memory
Exception
1300 ==
1000 —F
Virtual Physical :
address address
300 1000
Bound Base
Register 26Register 0

Base & Bound

@ P;: Base = 1000; Bound = 300
@ P,: Base = 500; Bound = 400

Memory
Exception

1150

Virtual
address

P

i Context Switch 300

Base & Bound Bound
saved in P;s PCB Regis’rer

MAXsys

1300 —p=

—>

1000 —=

1(0]0]0)

Base
z7Regis’rer

Physical
address

B
Ay

Base & Bound

B
Ay

MAXsys
@ P;: Base = 1000; Bound = 300
@ P>: Base = 500; Bound = 400
Memory
Exception
1300 ==
1000 —F
Virtual Physical
address address
{ Context Switch 400 500
3 Bound Base
Register 28Register 0

On Base & Bound

@ Contiguous Allocation

o contiguous virtual addresses are mapped to
contiguous physical addresses

@ Buf mapping entire address space to physical
memory

o is wasteful
» lots of free space between heap and stack...

» makes sharing hard

o does not work if the address space is larger
than physical memory

» think 64-bit registers...

29

E Pluribus

® An address space comprises
multiple segments

o contiguous sets of virtual
addresses, logically connected

> heap, code, stack, (and also
globals, libraries...)

D0 each segment can be of a
different size

£10)

Segmentation:
Generalizing Base & Bound

@ Base & Bound registers to
each segment

o each segment is
independently mapped to a
set of contiguous addresses
in physical memory
» no need fo map unused

virtual addresses

Segment Base Bound
Code 10K AN
[“Stack | T 2omeREEER

" Heap 35K 3K

(not to scale)

31

Segmentation

® Goal: Supporting large address spaces (while
allowing multiple processes to coexist in memory)

® Needed hardware

o two registers (Base and Bound) per segment

» values stored in the PCB

o if many segments, a segment fable, stored in memory,
at an address pointed to by a Segment Table Register
(STBR)

» process STBR value stored in the PCB

32

Segmentation: Mapping

@ How do we map a virtual address to the
appropriate segment?
0 Read VA as having two components

» s most significant bits identify the segment

— at most 2°segments

» 0 remaining bits identify offset within segment

— each segments size can be at most 2° bytes

k = s+o0 bits

Segment Table

@ Use s bits to index to the appropriate row of the
segment fable

Base Bound (Max 4Kk) Access
Code 32K 2K Read/Execute
Heap 34K 3K Read/Write
Stack, 28K 3K Read/Write

@ Segments can be shared by different processes

o use protection bits to determine if shared Read only
(maintaining isolation) or Read/Write (if shared, no isolation)

» processes can share code segment while keeping data private

34

Implementing Segmentation

MAXsys
Segment fable
generalizes Base & Bound
Memory
exception
A
M Logical no : o>
: addresses = :
phsmal
Segment Table i Yy
STBR Jease Regiser : i addresses
_________ Base Bound Access BOUN : Base :
512 40K
S A A
s N T T T e R
35 -

