
Opera&ng	Systems	

Lecture	11:		
Condi&on	variables,	and	atomic	primi&ves

CS4410

Rachit	Agarwal

Announcements

• “Missed	class”	emails		

• Last	lecture:	max	number	of	“missed	class”	emails	received	:)	

• Many	of	those	were	within	the	1-hour	limit	announced	earlier	

• [1]	Last	minute	things	come	up	

• [2]	Defines	“are	we	true	friends?”	moments		

• We	are	having	a	quiz;	you	don’t	seem	to	be	here	:)	

• No	way	for	me	to	differentiate	between	people	in	[1]	and	[2]	

• If	care	about	fairness,	follow	the	principle	of	sticking	with	rules	

• People	in	[1]	may	miss	out,	but	assuming	this	is	rare	

• People	in	[2]	do	not	benefit	unfairly	

• So,	I	am	going	to	stick	with	the	rule	

• Sorry	if	you	happen	to	be	in	[1]

Goal	of	today’s	lecture

•Wrap	up	synchronization	and	concurrency	

• Wrap	up	Semaphores	

• Condition	variables,	and	Monitors	

• Atomic	instructions,	and	implementing	locks

Examples	that	we	have	seen	so	far

• The	racing	threads	

• The	complicated	racing	threads	

• The	ATM	banking	

• Too-much-milk	

• Producer-consumer

Recall:	Example	5:	The	producer-consumer	problem

• Suppose	we	want	to	build	a	fork	dispenser	for	a	cafe	

• The	dispenser	(shared	resource)	has	limited	capacity	

• Consumers	pull	out	forks	on	one	end	of	the	dispenser	

• removeFromDispenser()	

• Error	if	tries	to	pull	out	a	fork	from	an	empty	dispenser	

• Error	if	cannot	pull	out	a	fork	when	there	is	one	

• Owner	adds	forks	on	the	other	end	of	the	dispenser	

• addToDispenser()	

• Error	if	tries	to	add	a	fork	to	a	full	dispenser

Consumer Owner

Recall:	Semaphores

• Semaphores	are	a	kind	of	generalized	lock	

• A	semaphore	is	“stateful”	

• Has	a	non-negative	value	associated	with	it	

• Value	is	incremented	and	decremented	atomically	

• Semaphore	has	a	positive	value	initially,	and	offers	two	atomic	operations	

• Down()	or	P()—stands	for	“proberen”	(to	test)	in	Dutch:		

• Thread	“waits”	for	the	semaphore	value	to	become	positive	

• When	so,	atomically	decrement	it	by	1	

• Up()	or	V()—stands	for	“verhogen”	(to	increment)	in	Dutch:		

• Thread	“waits”	for	the	semaphore	value	to	become	less	than	“max”	

• When	so,	atomically	increment	the	semaphore	value	by	1	

• Wake	up	a	thread	waiting	on	P,	if	any

Recall:	Producer	consumer	problem	with	semaphores

Owner(fork) {

 while(true)

 {

 Fork = newFork();

 enoughRoom.down();

 lock.acquire();

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 lock.release();

 count.up();

 }

}

Consumers() {

 while(true)

 {

 count.down();

 lock.acquire();

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 lock.release();

 enoughRoom.up();

 use(Fork);

 }

}

Complicated	sequence	of	semaphore	locks	
easy	to	make	mistakes!!

enoughRoom = semaphore(dispenser_capacity);

count = semaphore(0);

Split	binary	semaphore:	at	most	one	of	the	semaphore	is	released

Example	5:	The	producer-consumer	problem

• Suppose	we	want	to	build	a	fork	dispenser	for	a	cafe	

• The	dispenser	(shared	resource)	has	limited	capacity	

• Consumers	pull	out	forks	on	one	end	of	the	dispenser	

• removeFromDispenser()	

• sleep()—consumer	blocks	until	the	producer	wakes	it	up	

• Error	if	tries	to	pull	out	a	fork	from	an	empty	dispenser	

• Error	if	cannot	pull	out	a	fork	when	there	is	one	

• Owner	adds	forks	on	the	other	end	of	the	dispenser	

• addToDispenser()	

• wakeup()—a	routine	for	producer	to	wake	up	a	consumer	

• Error	if	tries	to	add	a	fork	to	a	full	dispenser

Consumer Owner

Example	5:	The	producer-consumer	problem:	Attempt	2

• Suppose	we	implement	producer	and	consumer	this	way

Owner(fork) {

 while(true) {

 Fork = newFork();

 if(forkCount == dispenserCapacity)

 {

 sleep();

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 if(forkCount == 1)

 {

 wakeup(consumer);

 }

 }

}

Consumers() {

 while(true) {

 if(forkCount == 0)

 {

 sleep();

 }

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 if(forkCount == dispenserCapacity - 1)

 {

 wakeup(owner);

 }

 use(Fork);

 }

}

Wrong:	inconsistent	forkcount

Example	5:	The	producer-consumer	problem:	Attempt	2

• Suppose	we	implement	producer	and	consumer	this	way
Owner(fork) {

 while(true) {

Fork = newFork();

lock.acquire();

if(forkCount ==
dispenserCapacity) {

lock.release();

sleep();

lock.acquire();

 }

addToDispenser(Fork);

forkCount = forkCount + 1;

if(forkCount == 1) {

wakeup(consumer);

}

lock.release();

 }

}

Consumers() {

 while(true) {

lock.acquire()

if(forkCount == 0) {

lock.release();

sleep();

lock.acquire();

}

Fork = removeFromDispenser();

forkCount = forkCount - 1;

if(forkCount == dispenserCapacity - 1) {

wakeup(owner);

}

use(Fork);

lock.release();

 }

}

Deadlocks!

• Can	lead	to	“deadlocks”	

• Step	1:	The	consumer	reads	forkCount	(=0);	about	to	enter	if	

• Step	2:	Just	before	calling	sleep()	

• Consumer	interrupted	

• Producer	adds	a	fork,	puts	it	into	dispenser,	forkCount=1	

• Since	forkCount=1,	tries	to	wake	up	the	consumer	

• But	the	consumer	isn’t	sleeping	yet—wakeup	call	lost	

• Step	3:	The	consumer	calls	sleep()	

• Goes	to	sleep;		

• Never	wakes	up,	since	wakeup	call	only	when	forkCount=1	

• Step	4:	Producer	fills	up	the	dispenser	

• Goes	to	sleep	

• Never	wakes	up,	since	wakeup	call	only	from	consumer

Example	5:	The	producer-consumer	problem:	Attempt	2

What	we	really	need	for	synchronization

•We	need	higher-level	synchronization	mechanism	that	provides	

•Mutual	exclusion	

• Easy	to	create	critical	sections	

• Scheduling	

• Block	threads	until	some	desired	event	occurs

Condition	variables

• Synchronization	mechanisms	need	more	than	just	mutual	exclusion	

• Also	need	a	way	to	wait	for	another	thread	to	do	something	

• e.g.,	wait	for	a	fork	to	be	added	to	the	dispenser	

• Condition	variable:	A	mechanism	to	enable	threads	to	wait	inside	a	critical	section	

• Achieved	by	releasing	a	lock	

• Three	operations	on	condition	variables	(condition	x;)	

• wait(condition,	lock):		

• Atomically:	Release	lock;	put	thread	to	sleep	until	condition	is	signaled	

• When	thread	wakes	up	again,	re-acquire	lock	before	returning	

• signal/notify(condition,	lock):	

• If	any	threads	waiting	on	condition,	wake	up	one	of	them	

• Caller	must	hold	lock:	must	be	the	same	as	the	lock	used	in	the	wait	call	

• broadcast/notifyall(condition,	lock):		

• Same	as	signal/notify,	except	wake	up	all	waiting	threads

Condition	variables

• Three	operations	on	condition	variables	(condition	x;)	

• x.wait()	

• x.signal()	or	x.notify()	

• x.broadcast()	or	x.notifyall()	

• Only	call	the	above	operations	when	holding	a	lock	

• Condition	variables	(unlike	semaphores)	are	stateless

Condition	variables—notify	semantics
• When	a	thread	calls	x.notify(),	it	is	signaling	“waiting”	threads		

• There	is	some	task	that	can	be	done	by	the	waiting	threads	

• The	thread	calling	notify()	can	continue	doing	its	tasks	

• Which	threads	executed	once	notify()	is	called?	

• If	no	thread	waiting	on	condition	variable,	notifier	continues	

• If	one	or	more	threads	waiting	on	condition	variable	

• At	least	two	“ready”	threads:	those	waiting,	and	the	notifier;	which	one	runs?	

• Mesa	(or	Brinch	Hansen	semantics)	

• Waiting	thread	moved	to	ready	queue;	but	not	guaranteed	to	run	right	away	

• Hoare	semantics:	

• Thread	calling	notify()	suspended,	and		

• atomically:	ownership	of	the	lock	passed	to	one	of	the	waiting	threads	

• The	thread	getting	the	ownership	resumes	execution	immediately	

• Thread	calling	notify()	is	resumed	if	the	above	thread	exits	critical	section	

• Or	if	the	above	thread	goes	to	wait	again

notify()	versus	notifyall()
• Signal	versus	broadcast	

• Signals	wakes	up	one	of	the	waiting	threads	

• Broadcast	wakes	up	all	of	the	waiting	threads	

• It	is	always	safe	to	use	notifyall()	instead	of	notify()	

• But	performance	may	be	affected	

• notify()	is	preferable	when	

• At	most	one	waiting	thread	can	make	progress	(e.g.,	with	mutual	exclusion)	

• Any	of	the	threads	waiting	on	condition	variable	can	make	progress	

• notifyall()	is	preferable	when	

• Multiple	waiting	threads	may	be	able	to	make	progress	

• Some	of	the	waiting	threads	can	make	progress,	others	cannot

Condition	variables	versus	Semaphores
• wait()	versus	down()	

• down()	blocks	threads	only	if	value=0	

• wait()	always	blocks,	and	gives	up	lock	

• notify()	versus	up()	

• up()	is	stateful	

• if	no	waiting	thread,	up()	ensures	future	thread	does	not	wait	on	down()	

• notify()	is	stateless	

• If	no	waiting	thread,	notify()	is	a	no	op	

• Condition	variables	are	stateless,	making	code	easier	to	read	

• Conditions	for	which	threads	are	waiting	are	explicit

Monitors

• When	locks	and	condition	variables	are	used	together	like	the	above	

• The	result	is	called	a	monitor	

• Monitor	

• A	collection	of	procedures	manipulating	a	shared	data	structure	

• One	lock	that	must	be	held	whenever	accessing	the	shared	data	

• Typically	each	procedure	acquires	the	lock	at	the	very	beginning	

• And	releases	the	lock	before	returning	

• One	or	more	condition	variables	used	for	waiting

Example	5:	Producer-consumer	with	condition	variables

Owner(fork) {

 while(true) {

 lock.acquire();

 Fork = newFork();

 while(forkCount == dispenserCapacity) {

 enoughRoom.wait(lock);

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 if (forkCount == 1) {

count.signal();

 }

 lock.release();

 }

}

Consumers() {

 while(true) {

 lock.acquire();

 while(forkCount == 0) {

 count.wait(lock);

 }

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 if (forkCount == dispenserCapacity-1) {

 enoughRoom.signal();

 }

 lock.release();

 use(Fork);

 }

}

Can	sleep	within	crigcal	secgon	and	simpler	code!

enoughRoom = condition();

count = condition();

One	last	remaining	bit	

What	is	atomic,	and	what	is	not?

Recall:	Atomic	Operations

• “Indivisible	operations”	supported	by	hardware	

• Indivisible:	An	operation	that	always	runs	to	completion	or	not	at	all	

• No	interruptions	

• It	cannot	be	stopped	in	the	middle	

• And	state	cannot	be	modified	by	someone	else	in	the	middle	

• Fundamental	building	block	

• If	no	atomic	operations,	then	have	no	way	for	threads	to	work	together	

• What	atomic	operations	should	the	hardware	support?	

• We	have	studied	five	examples,	each	with	different	complexity	

• And	with	different	set	of	operations		

• We	have	also	studied	three	different	higher-layer	primitives	

• Locks,	Semaphores,	condition	variables	

• Are	these	atomic?	What	else	is	atomic?

Atomic	Operations

• Most	modern	processors	support	a	basic	set	of	atomic	operations	

• Atomic	read-write	

• Atomic	swap	

• test-and-set	

• fetch-and-add	

• compare-and-swap	

• store-conditional	

• Can	be	used	to	implement	higher-level	primitives	

• E.g.,	locks,	semaphores,	condition	variables

Atomic	test	and	set

• Hardware	offers	an	instruction	which		

• Sets	the	value	of	a	memory	location	to	1	

• Returns	the	previous	value		

• Hardware	executes	both	operations	atomically	

• Caller	uses	return	value	to	see	if	the	instruction	changed	the	state	

 int test_and_set(int* x)

 {

 old = *x;

 *x = 1;

 return old;

 }

Locks	using	test	and	set

int x = 0;

while(test_and_set(x)) {}; // acquire lock

// critical section

 x = 0; // release lock

1. While	loop	wastes	CPU	cycles	if	wait	is	long	!!	
2. Efficient	only	when	wait	is	short?

• Suppose	we	implement	locks	this	way

acquire(lock)

{

 while(test_and_set(lock)) {};

}

release(lock)

{

 lock = 0;

}

Atomic	compare	and	swap

• Hardware	offers	an	instruction	which	

• Compares	a	given	value	with	a	given	expected	value	

• If	equal,	changes	it	to	given	new	value	

• Return	true	

• Else,	return	false	

• All	operations	are	executed	atomically

 int compare_and_swap(int* p, int expected, int new)

 {

 if(*p != expected)

 {

 return false;

 }

 *p = new

 return true;

 }

Atomic	add	using	compare	and	swap

atomic_add(int* p, int x)

{

 done = false;

 while(not done)

 {

 value = *p;

 done = compare_and_swap(p, value, value + x)

 }

 return value + x;

}

Atomically	adds	x	to	the	value	present	at	p

• Suppose	we	implement	atomic	add	this	way

Some	final	thoughts	on	synchronization

• One	of	the	hardest	topics	in	operating	systems	

• It	is	okay	if	you	had	hard	time	grasping	some	of	the	ideas	

• All	of	us	have	struggled	with	synchronization	(for	a	very	long	time!)	

• It	is	important	to	understand	the	problem	

•We	have	done	many	examples	

• Many	more	examples	in	books/Internet	

• Synchronization	primitives	require	practice	

• Many	problems	in	HW2	

• Some	more	problems	in	HW3	

• More	problems	in	the	book	

• Try	to	solve	them	

• Come	to	office	hours	to	ask	questions	

• Practice,	practice,	practice

