
Opera&ng	Systems	

Lecture	10:		
Semaphores	and	Monitors

CS4410

Rachit	Agarwal

Announcements

• Office	hours		

• Priority	to	students	who	signed	up	(Calendly	link	on	webpage)	

• You	are	welcome	to	walk	in,	but	strict	prioritization	

• Homework	submission	

• You	are	required	to	“mark”	pages	for	individual	answers	

• We	will	deduct	10%	if	you	do	not	mark	pages	

• Prelims	

• Prelim1:	14th	October;	Prelim2:	23rd	November	

• In-class:	there	should	be	no	conflicts;	no	make	up	

• Open	notes,	open	book,	open	everything	except:	

• The	Internet	

• Other	students	

• Infinite	time:	we	want	to	test	you	on	your	knowledge,	not	speed

Goal	of	today’s	lecture

•Wrap	up	synchronization	and	concurrent	programming	

• Semaphores,	Condition	variables,	and	Monitors

Examples	that	we	have	seen	so	far

• The	racing	threads	

• The	complicated	racing	threads	

• The	ATM	banking	

• Too-much-milk	

• Producer-consumer

Example	5:	The	producer-consumer	problem

• Suppose	we	want	to	build	a	fork	dispenser	for	a	cafe	

• The	dispenser	(shared	resource)	has	limited	capacity	

• Consumers	pull	out	forks	on	one	end	of	the	dispenser	

• removeFromDispenser()	

• Error	if	tries	to	pull	out	a	fork	from	an	empty	dispenser	

• Error	if	cannot	pull	out	a	fork	when	there	is	one	

• Owner	adds	forks	on	the	other	end	of	the	dispenser	

• addToDispenser()	

• Error	if	tries	to	add	a	fork	to	a	full	dispenser

Consumer Owner

Example	5:	The	producer	consumer	problem

Suppose	we	implement	producer	and	consumer	in	the	following	manner:

Owner(fork) {

 while(true)

 {

 if(forkCount < dispenserSize)

 {

 Fork = newFork();

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 }

 }

}

Consumer() {

 while(true)

 {

 if(forkCount > 0)

 {

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 use(Fork);

 }

 }

}

Is	this	correct?

Example	5:	The	producer	consumer	problem

• t=0,	dispenserSize	=	5,	forkCount	=	5

 if(forkCount < dispenserSize)

 {

 Fork = newFork();

 addToDispenser(Fork);

 if(forkCount > 0)

 {

 Fork = removeFromDispenser();

 forkCount = forkCount - 1 ;

 use(Fork);

 }

Inconsistent	forkCount!!

 forkCount = forkCount + 1;

 }

 if(forkCount > 0)

 {

 Fork = removeFromDispenser();

 forkCount = forkCount - 1 ;

 use(Fork);

 }

Time

Example	5:	Producer	consumer	problem	with	Locks

Owner(fork) {

 while(true)

 {

 lock.acquire();

 if(forkCount < dispenserSize)

 {

Fork = newFork();

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 }

 lock.release();

 }

}

Consumer() {

 while(true)

 {

 lock.acquire();

 if(forkCount > 0)

 {

 Fork = removeFromDispenser();

 forkCount = forkCount - 1 ;

use(Fork);

 }

 lock.release();

 }

}

CPU	cycles	may	be	wasted:	
Consumer/producer	may	repeatedly	acquire	and	release	locks!!!

• Let’s	try	locks

Semaphores

• Semaphores	are	a	kind	of	generalized	lock	

• A	semaphore	is	“stateful”	

• Has	a	non-negative	value	associated	with	it	

• Value	is	incremented	and	decremented	atomically	

• Semaphore	has	a	positive	value	initially,	and	offers	two	atomic	operations	

• Down()	or	P()—stands	for	“proberen”	(to	test)	in	Dutch:		

• Thread	“waits”	for	the	semaphore	value	to	become	positive	

• When	so,	atomically	decrement	it	by	1	

• Up()	or	V()—stands	for	“verhogen”	(to	increment)	in	Dutch:		

• Thread	“waits”	for	the	semaphore	value	to	become	less	than	“max”	

• When	so,	atomically	increment	the	semaphore	value	by	1	

• Wake	up	a	thread	waiting	on	P,	if	any	

• Binary	Semaphore:	Semaphore	with	initial	value	1		

• Mutual	exclusion	like	locks

Example	5:	Producer	consumer	problem	with	semaphores

Owner(fork) {

 while(true)

 {

 Fork = newFork();

 enoughRoom.down();

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 count.up();

 }

}

Consumers() {

 while(true)

 {

 count.down();

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 enoughRoom.up();

 use(Fork);

 }

}

enoughRoom = semaphore(1);

count = semaphore(0);

•Problem?	
•Only	works	for	dispenser	size	=	1

Split	binary	semaphore:	at	most	one	of	the	semaphore	is	released

Example	5:	Producer	consumer	problem	with	semaphores

Owner(fork) {

 while(true)

 {

 Fork = newFork();

 enoughRoom.down();

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 count.up();

 }

}

Consumers() {

 while(true)

 {

 count.down();

Fork = removeFromDispenser();

forkCount = forkCount - 1;
enoughRoom.up();

 use(Fork);

 }

}

Problem?	
Does	not	work:	number	of	consumers/producers	>	1	

forkCount	can	become	inconsistent	with	muldple	threads	in	cridcal	secdon

enoughRoom = semaphore(dispenser_capacity);

count = semaphore(0);

Count	semaphore:	at	most	one	of	the	semaphore	is	released

Example	5:	Producer	consumer	problem	with	semaphores

Owner(fork) {

 while(true)

 {

lock.acquire();

Fork = newFork();

enoughRoom.down();

addToDispenser(Fork);

forkCount = forkCount + 1;

count.up();

lock.release();

 }

}

Consumers() {

 while(true)

 {

lock.acquire();

count.down();

Fork = removeFromDispenser();

forkCount = forkCount - 1;

enoughRoom.up();

lock.release();

use(Fork);

 }

}

Problem?	
Deadlock:		

consumer	takes	lock,	executes	down(),	producer	cannot	update	if	forkcount=0;		
or,	forkcount=dispenser-size	and	producer	gets	the	lock;

enoughRoom = semaphore(dispenser_capacity);

count = semaphore(0);

Example	5:	Producer	consumer	problem	with	semaphores

Owner(fork) {

 while(true)

 {

 Fork = newFork();

 enoughRoom.down();

 lock.acquire();

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 lock.release();

 count.up();

 }

}

Consumers() {

 while(true)

 {

 count.down();

 lock.acquire();

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 lock.release();

 enoughRoom.up();

 use(Fork);

 }

}

Complicated	sequence	of	semaphore	locks,	easy	to	make	mistakes!!

enoughRoom = semaphore(dispenser_capacity);

count = semaphore(0);

• Let’s	use	binary	semaphores	which	are	similar	to	locks

Example	5:	The	producer-consumer	problem

• Suppose	we	want	to	build	a	fork	dispenser	for	a	cafe	

• The	dispenser	(shared	resource)	has	limited	capacity	

• Consumers	pull	out	forks	on	one	end	of	the	dispenser	

• removeFromDispenser()	

• sleep()—consumer	blocks	until	the	producer	wakes	it	up	

• Error	if	tries	to	pull	out	a	fork	from	an	empty	dispenser	

• Error	if	cannot	pull	out	a	fork	when	there	is	one	

• Owner	adds	forks	on	the	other	end	of	the	dispenser	

• addToDispenser()	

• wakeup()—a	routine	for	producer	to	wake	up	a	consumer	

• Error	if	tries	to	add	a	fork	to	a	full	dispenser

Consumer Owner

Example	5:	The	producer-consumer	problem:	Attempt	2

• Suppose	we	implement	producer	and	consumer	this	way

Owner(fork) {

 while(true) {

 Fork = newFork();

 if(forkCount == dispenserCapacity)

 {

 sleep();

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 if(forkCount == 1)

 {

 wakeup(consumer);

 }

 }

}

Consumers() {

 while(true) {

 if(forkCount == 0)

 {

 sleep();

 }

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 if(forkCount == dispenserCapacity - 1)

 {

 wakeup(owner);

 }

 use(Fork);

 }

}

Wrong:	inconsistent	forkcount

Example	5:	The	producer-consumer	problem:	Attempt	2

• Suppose	we	implement	producer	and	consumer	this	way
Owner(fork) {

 while(true) {

Fork = newFork();

lock.acquire();

if(forkCount ==
dispenserCapacity) {

lock.release();

sleep();

lock.acquire();

 }

addToDispenser(Fork);

forkCount = forkCount + 1;

if(forkCount == 1) {

wakeup(consumer);

}

lock.release();

 }

}

Consumers() {

 while(true) {

lock.acquire()

if(forkCount == 0) {

lock.release();

sleep();

lock.acquire();

}

Fork = removeFromDispenser();

forkCount = forkCount - 1;

if(forkCount == dispenserCapacity - 1) {

wakeup(owner);

}

use(Fork);

lock.release();

 }

}

Deadlocks!

• Can	lead	to	“deadlocks”	

• Step	1:	The	consumer	reads	forkCount	(=0);	about	to	enter	if	

• Step	2:	Just	before	calling	sleep()	

• Consumer	interrupted	

• Producer	adds	a	fork,	puts	it	into	dispenser,	forkCount=1	

• Since	forkCount=1,	tries	to	wake	up	the	consumer	

• But	the	consumer	isn’t	sleeping	yet—wakeup	call	lost	

• Step	3:	The	consumer	calls	sleep()	

• Goes	to	sleep;		

• Never	wakes	up,	since	wakeup	call	only	when	forkCount=1	

• Step	4:	Producer	fills	up	the	dispenser	

• Goes	to	sleep	

• Never	wakes	up,	since	wakeup	call	only	from	consumer

Example	5:	The	producer-consumer	problem:	Attempt	2

Example	5:	The	producer-consumer	problem:	Attempt	2

• Suppose	we	implement	producer	and	consumer	this	way
Owner(fork) {

 while(true) {

Fork = newFork();

lock.acquire();

if(forkCount ==
dispenserCapacity) {

lock.release();

sleep();

lock.acquire();

 }

addToDispenser(Fork);

forkCount = forkCount + 1;

if(forkCount == 1) {

wakeup(consumer);

}

lock.release();

 }

}

Consumers() {

 while(true) {

lock.acquire()

if(forkCount == 0) {

lock.release();

sleep();

lock.acquire();

}

Fork = removeFromDispenser();

forkCount = forkCount - 1;

if(forkCount == dispenserCapacity - 1) {

wakeup(owner);

}

use(Fork);

lock.release();

 }

}

Deadlocks!

What	we	really	need	for	synchronization

•We	need	higher-level	synchronization	mechanism	that	provides	

•Mutual	exclusion	

• Easy	to	create	critical	sections	

• Scheduling	

• Block	threads	until	some	desired	event	occurs

Condition	variables

• Synchronization	mechanisms	need	more	than	just	mutual	exclusion	

• Also	need	a	way	to	wait	for	another	thread	to	do	something	

• e.g.,	wait	for	a	fork	to	be	added	to	the	dispenser	

• Condition	variable:	A	mechanisms	to	wait	for	a	condition	to	become	true	

• Three	operations	on	condition	variables	(condition	x;)	

• wait(condition,	lock):		

• Release	lock;	put	thread	to	sleep	until	condition	is	signaled	

• When	thread	wakes	up	again,	re-acquire	lock	before	returning	

• signal(condition,	lock):	

• If	any	threads	waiting	on	condition,	wake	up	one	of	them	

• Caller	must	hold	lock:	must	be	the	same	as	the	lock	used	in	the	wait	call	

• broadcast(condition,	lock):		

• Same	as	signal,	except	wake	up	all	waiting	threads

Monitors

• When	locks	and	condition	variables	are	used	together	like	the	above	

• The	result	is	called	a	monitor	

• Monitor	

• A	collection	of	procedures	manipulating	a	shared	data	structure	

• One	lock	that	must	be	held	whenever	accessing	the	shared	data	

• Typically	each	procedure	acquires	the	lock	at	the	very	beginning	

• And	releases	the	lock	before	returning	

• One	or	more	condition	variables	used	for	waiting

Example	5:	Producer-consumer	with	condition	variables

Owner(fork) {

 while(true)

 {

 lock.acquire();

 Fork = newFork();

 while(forkCount == dispenserCapacity)

 {

 enoughRoom.wait(lock);

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 if (forkCount == 1) {

count.signal();

 }

 lock.release();

 }

}

Consumers() {

 while(true)

 {

 lock.acquire();

 while(forkCount == 0)

 {

 count.wait(lock);

 }

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 if (forkCount == dispenserCapacity-1) {

 enoughRoom.signal();

 }

 lock.release();

 use(Fork);

 }

}

Can	sleep	within	cridcal	secdon	and	simpler	code!

enoughRoom = condition();

count = condition();

