
Opera&ng	Systems

CS4410

Rachit	Agarwal

Goal	of	Today’s	Lecture

• Understand	the	concurrency	problem	

• Understand	the	concurrency/synchronization	terminology

Concurrency	and	Synchronization	

Understanding	the	problem

Recall	Example	1.1:	The	racing	threads—one	possibility

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Whats	happening	under	the	hood	(inside	the	loop)?	

(If	threads	were	running	concurrently)

rB = 0 <- load rB, value

rB = -1 <- sub rB, rB, 1

value = -1 <- store rB, value

rA = 0 <- load rA, value

rA = 1 <- add rA, rA, 1

value = 1 <- store rA, value

Whats	value	after	these	executions?Time

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);

Recall:	Example	1.2:	The	racing	threads—another	possibility

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Whats	happening	under	the	hood	(inside	the	loop)?	

(If	threads	were	running	concurrently)

rB = 0 <- load rB, value

rB = -1 <- sub rB, rB, 1
value = -1 <- store rB, value

rA = 0 <- load rA, value

rA = 1 <- add rA, rA, 1

value = 1 <- store rA, value

Whats	value	after	these	executions?Time

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);

The	crux	of	the	problem

• Two	concurrent	threads	(or	processes)	

• Accessing	a	shared	resource	(account)	

• Without	any	coordination—with	“synchronization"	

• Lack	of	synchronization	

• Creates	race	conditions	

• Non-deterministic	outputs,	depending	on	thread	scheduling	

• In	scenarios	involving	Shared	resources	+	concurrent	execution	

• We	need	mechanisms	for	synchronization	

• Ensure	that	we	can	reason	about	execution	outputs	

• Ensure	deterministic	outputs

Shared	bank	account	

Initial	balance:	$1000;		

both	of	you	execute	withdraw (account, 500) at the same time

Time

• What	is	the	final	balance?	

• 500?	1000?	0?	

• Everyone	is	happy!

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

Example	3.1:	The	real-world	ATM	banking	example

• What	is	the	final	balance?	

• 500?	1000?	0?	

• Bank	goes	berserk!Time

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

balance = read_balance (account);
balance = balance - amount;

write_balance (account, balance);
return balance;

Recall:	Example	3.2:	The	real-world	ATM	banking	example

Shared	bank	account	

Initial	balance:	$1000;		

both	of	you	execute	withdraw (account, 500) at the same time

You	in	your	lovely,	cozy,	non-shared	apartment

Look in fridge. Out of milk.
Leave for store.
Arrive at store.
Buy milk.
Arrive home. Put milk in fridge.

Example	4:	Too-much-milk	problem

Drink	milk,	be	strong!

3:00
3:05
3:10
3:15
3:20
3:25
3:30

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Look in fridge. Out of milk.
Leave for store.
Arrive at store.
Buy milk.
Arrive home. Put milk in fridge.

Look in fridge. Out of milk.
Leave for store.
Arrive at store.
Buy milk.
Arrive home. Put milk in fridge.

Example	4:	Too-much-milk	problem

Too	much	milk!

3:00
3:05
3:10
3:15
3:20
3:25
3:30

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Milk) {
Buy milk;

}

If (no Milk) {
Buy milk;

}

Example	4:	Too-much-milk	problem

Too	much	milk!

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Milk) {
If (no Note) {

Leave note;
Buy milk;
Remove note;

}
}

If (no Milk) {
If (no Note) {

Leave note;
Buy milk;
Remove note;

}
}

Example	4:	Potential	solution?	Attempt	1

Attempt	1:	Let	us	try	the	“freezing”	idea

Does	this	work?

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Milk) {
If (no Note) {

Leave note;
Buy milk;
Remove note;

}
}

If (no Milk) {

If (no Note) {
Leave note;
Buy milk;
Remove note;

}
}

No!

Example	4:	Potential	solution?	Attempt	1

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Attempt	2:	Let	us	get	smarter:	freeze	first

Does	this	work?

Example	4:	Potential	solution?	Attempt	2

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Nobody	ever	buys	milk!

No!

Example	4:	Potential	solution?	Attempt	2

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (Note) {
If (no Milk) {

Buy milk;
}
Remove Note;

}

If (no Note) {
If (no Milk) {

Buy milk;
}
Leave note;

}

Attempt	3:	May	be	different	interpretations	of	notes

Does	this	work?

Example	4:	Potential	solution?	Attempt	3

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Note) {
If (no Milk) {

Buy milk;
}
Leave note;

}

No!	Starvation!

Example	4:	Potential	solution?	Attempt	3

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;
If (no noteA) {

If (no Milk) {
Buy milk;

}
}
Remove noteB;

Leave noteA;
If (no noteB) {

If (no Milk) {
Buy milk;

}
}
Remove noteA;

Attempt	4:	Perhaps	two	notes?

Does	this	work?

Example	4:	Potential	solution?	Attempt	4

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;

If (no noteA) {
If (no Milk) {

Buy milk;
}

}
Remove noteB;

Leave noteA;

If (no noteB) {
If (no Milk) {

Buy milk;
}

}
Remove noteA;

Even	worse!	Lockup,	deadlock,	starvation!

Example	4:	Potential	solution?	Attempt	4

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Attempt	5:	What	are	we	missing?	

“If	roommate	is	not	doing	something,	I	should	do	it”

Does	this	work?

Example	4:	Potential	solution?	Attempt	5

“If	roommate	is	doing	something,	I	should	not	do	it”

Leave noteB;
If (no noteA) {

If (no Milk) {
Buy milk;

}
}
Remove noteB;

Leave noteA;
While (noteB) {

Do nothing;
}

If (no Milk) {
Buy milk;

}
Remove noteA;

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;
If (no noteA) {

If (no Milk) {
Buy milk;

}
}
Remove noteB;

Leave noteA;
While (noteB) {

Do nothing;
}

If (no Milk) {
Buy milk;

}
Remove noteA;

Case	1:	While	(noteB)	“happens	before”	Leave	noteB

Example	4:	Potential	solution?	Attempt	5

B	has	not	leZ	a	note	

A	buys	milk;	
A’s	note	is	up;	
B	cannot	buy	milk	

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;
If (no noteA) {

If (no Milk) {
Buy milk;

}
}
Remove noteB;

Leave noteA;
While (noteB) {

Do nothing;
}

If (no Milk) {
Buy milk;

}
Remove noteA;

Case	2.1:		

While	(noteB)	happens	after	Leave	noteB	

If	(no	noteA)	happens	before	Leave	noteA

Example	4:	Potential	solution?	Attempt	5

B’s	note	is	up	
A	does	nothing	

If	A’s	note	is	not	up;	
B	buys	milk;

You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;
If (no noteA) {

If (no Milk) {
Buy milk;

}
}
Remove noteB;

Leave noteA;
While (noteB) {

Do nothing;
}

If (no Milk) {
Buy milk;

}
Remove noteA;

Case	2.2:		

While	(noteB)	happens	after	Leave	noteB	

If	(no	noteA)	happens	after	Leave	nodeA

Example	4:	Potential	solution?	Attempt	5

B’s	note	is	up	
A	does	nothing	

If	A’s	note	is	up;	
B	does	not	buy	milk;	

Eventually	removes	B’s	note;	Once	B	removes	note	
A	buys	milk

Leslie	Lamport’s	“Bakery	Algorithm”	(1974)	generalizes	this	solution	to	n	threads

This	generalizes	to	n	threads	…

Discussion

• Our	solution	protects	a	single	“critical	section”	piece	of	code	for	each	thread

• Our	solutions	works,	but	is	really	unsatisfactory	

• Complexity—even	for	this	simple	example	

• Hard	to	convince	of	correctness	

• Asymmetric	code—You	and	your	roommate	have	different	codes	

• What	if	there	are	lots	of	threads	

• While	your	thread	is	waiting,	the	thread	is	wasting	CPU	time	

• This	is	called	“busy-waiting”	

• Is	there	a	better	way?	

• Better	hardware	support	

• what	if	hardware	can	support	executing	critical	section	in	“atomic”	steps	

• Better	higher-level	programming	abstractions	

• Using	whatever	atomic	operations	hardware	supports

If (no Milk) {
Buy milk;

}

Atomic	Operations

• “Indivisible	operations”	supported	by	hardware	

• Indivisible:	An	operation	that	always	runs	to	completion	or	not	at	all	

• No	interruptions	

• It	cannot	be	stopped	in	the	middle	

• And	state	cannot	be	modified	by	someone	else	in	the	middle	

• Fundamental	building	block	

• If	no	atomic	operations,	then	have	no	way	for	threads	to	work	together	

• What	atomic	operations	should	the	hardware	support?	

• We	have	studied	four	examples,	each	with	different	complexity	

• And	with	different	set	of	operations		

Atomic	Operations

• Most	modern	processors	support	a	basic	set	of	atomic	operations	

• Atomic	read-write	

• Atomic	swap	

• test-and-set	

• fetch-and-add	

• compare-and-swap	

• store-conditional	

• Covered	in	3410—please	review	

• Can	be	used	to	implement	higher-level	primitives

Building	higher-level	primitives	using	atomic	operations

• We	will	study	three	primitives	

• Locks—mostly	covered	in	3410	

• Semaphores	

• Conditional	variables	

• Monitors:	locks	+	conditional	variables	

• Can	be	used	to	implement	higher-level	primitives

Recall:	Locks

• Lock:	Used	to	restrict	access	to	something	important	(shared	data)	

• Lock	before	accessing	shared	data	

• read/write	shared	data	(critical	section)	

• Other	threads	waiting	at	this	point	for	the	lock	to	be	released	

• Important	idea:	synchronization	requires	waiting	

• Unlock		

• Most	operating	systems	offer	two	atomic	operations	on	locks:	

• lock.acquire()	

• wait	until	lock	is	free,	then	mark	it	as	busy	atomically	

• After	the	call	returns,	calling	thread	holds	the	lock	

• lock.release()	

• releases	the	lock	

• Should	be	called	only	by	the	thread	that	holds	the	lock

Example	1:	The	racing	threads	with	locks

• Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Lock.acquire();

value = value + 1;

If (value != -1)

{

 print(“Thread A wins”);

}

Lock.release();

Lock.acquire();

value = value - 1;

If (value == -1)

{

 print(“Thread B wins”);

}

Lock.release();

The	thread	that	acquires	the	lock	first,	wins!

Example	2:	The	complicated	racing	threads	with	locks

• Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Lock.acquire();

while (value < 10)

{

 value = value + 1;

}

print(“Thread A wins”);

Lock.release();

Lock.acquire();

while (value > -10)

{

 value = value - 1;

}

print(“Thread B wins”);

Lock.release();

Again,	the	thread	that	acquires	the	lock	first,	wins!

• Initial	balance:	$1000;	two	simultaneous	withdrawals	of	$500;

int withdraw(account, amount) {

 lock.acquire();

 balance = read_balance(account);

 balance = balance - amount;

 write_balance(account, balance);

 lock.release();

 return balance;

}

int withdraw(account, amount) {

 lock.acquire();

 balance = read_balance(account);

 balance = balance - amount;

 write_balance(account, balance);

 lock.release();

 return balance;

}

Balance	is	always	determinis&c!	(0	in	this	case)	
Note:	Always	release	before	returning	from	the	func&on	call

Example	3:	The	real-world	ATM	banking	example	with	locks

• You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

lock.acquire();

If (no Milk) {

 Buy milk;

}

lock.acquire();

lock.acquire();

If (no Milk) {

 Buy milk;

}

lock.acquire();

Drink	milk	and	be	strong	without	buying	too	much	milk!

Example	4:	Too-much-milk	problem	with	locks

Do	locks	solve	all	problems?

Example	5:	The	producer-consumer	problem

• Suppose	we	want	to	build	a	fork	dispenser	for	a	cafe	

• The	dispenser	(shared	resource)	has	limited	capacity	

• Consumers	pull	out	forks	on	one	end	of	the	dispenser	

• removeFromDispenser()	

• sleep()—consumer	blocks	until	the	producer	wakes	it	up	

• Error	if	tries	to	pull	out	a	fork	from	an	empty	dispenser	

• Error	if	cannot	pull	out	a	fork	when	there	is	one	

• Owner	adds	forks	on	the	other	end	of	the	dispenser	

• addToDispenser()	

• wakeup()—a	routine	for	producer	to	wake	up	a	consumer	

• Error	if	tries	to	add	a	fork	to	a	full	dispenser

Consumer Owner

Example	5:	The	producer-consumer	problem:	Attempt	2

• Suppose	we	implement	producer	and	consumer	this	way

Owner(fork) {

 while(true) {

 Fork = newFork();

 if(forkCount == dispenserCapacity)

 {

 sleep();

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 if(forkCount == 1)

 {

 wakeup(consumer);

 }

 }

}

Consumers() {

 while(true) {

 if(forkCount == 0)

 {

 sleep();

 }

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 if(forkCount == dispenserCapacity - 1)

 {

 wakeup(owner);

 }

 use(Fork);

 }

}

Are	we	done?	Is	this	correct?

• Can	lead	to	“deadlocks”	

• Step	1:	The	consumer	reads	forkCount	(=0);	about	to	enter	if	

• Step	2:	Just	before	calling	sleep()	

• Consumer	interrupted	

• Producer	adds	a	fork,	puts	it	into	dispenser,	forkCount=1	

• Since	forkCount=1,	tries	to	wake	up	the	consumer	

• But	the	consumer	isn’t	sleeping	yet—wakeup	call	lost	

• Step	3:	The	consumer	calls	sleep()	

• Goes	to	sleep;		

• Never	wakes	up,	since	wakeup	call	only	when	forkCount=1	

• Step	4:	Producer	fills	up	the	dispenser	

• Goes	to	sleep	

• Never	wakes	up,	since	wakeup	call	only	from	consumer

Example	5:	The	producer-consumer	problem:	Attempt	2

Example	5:	The	producer-consumer	problem

Owner(fork) {

 while(true)

 {

 Fork = newFork();

 if(forkCount == dispenserCapacity)

 {

 sleep();

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 if(forkCount == 1)

 {

 wakeup(consumer);

 }

 }

}

Consumers() {

 while(true)

 {

 if(forkCount == 0)

 {

 sleep();

 }Time

Example	5:	The	producer	consumer	problem	with	locks

• Suppose	we	implement	producer	and	consumer	this	way

Owner(fork) {

 while(true)

 {

 Fork = newFork();

 lock.acquire();

 while(forkCount == dispenserCapacity)

 {

 lock.release();

 lock.acquire();

 }

 addToDispenser(Fork);

 forkCount = forkCount + 1;

 lock.release();

 }

}

Consumers() {

 while(true)

 {

 lock.acquire();

 while(forkCount == 0)

 {

 lock.release();

 lock.acquire();

 }

 Fork = removeFromDispenser();

 forkCount = forkCount - 1;

 lock.release();

 use(Fork);

 }

}

Too	many	CPU	cycles	wasted	by	the	while	loop!!!

Semaphores

• Semaphores	are	a	kind	of	generalized	lock	

• A	semaphore	is	“stateful”	

• Has	a	non-negative	value	associated	with	it	

• Value	is	incremented	and	decremented	atomically	

• Semaphore	has	a	positive	value	initially,	and	offers	two	atomic	operations	

• Down()	or	P()—stands	for	“proberen”	(to	test)	in	Dutch:		

• waits	for	the	semaphore	value	to	become	positive	

• When	so,	atomically	decrement	it	by	1	

• Up()	or	V()—stands	for	“verhogen”	(to	increment)	in	Dutch:		

• increment	the	semaphore	value	by	1	

• wake	up	a	thread	waiting	on	P,	if	any	

• Binary	Semaphore:	Semaphore	with	initial	value	1		

• Mutual	exclusion	like	locks	

• All	problems	solvable	with	locks	can	be	solved	with	a	binary	semaphore

