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Goal	of	Today’s	Lecture

• Finish	up	our	scheduler	

• Understand	the	concurrency	problem



Let us design our own

CPU scheduler



An ideal scheduler?
Each thread gets an equal share of CPU


While ensuring that time-sensitive jobs are not blocked


What is the “mechanism” we should use? 


Priorities? Nah. We already saw issues.


Number of quantum used? Close, but can be cheated.


Why not directly track CPU time per thread?

Scheduling decision


Among all “ready” threads

Choose the thread with minimum CPU time so far



An ideal scheduler?
Scheduling decision: 


Among all “ready” threads

Choose the thread with minimum CPU time so far


Why may this work?

I/O bound jobs: issue next file op, and wait


Blocked/sleeping threads don’t advance their CPU time

When ready, get boosted!


Interactive jobs: respond to an input, and wait

Blocked/sleeping threads don’t advance their CPU time

When ready, get boosted!


CPU-bound jobs: grind away all the remaining CPU cycles

While getting a fair allocation of CPU cycles

Cannot cheat!—kernel maintains CPU time for each job



An ideal scheduler?
Scheduling decision: 


Among all “ready” threads

Choose the thread with minimum CPU time so far


But what if too many I/O bound and/or interactive jobs?

Starvation of CPU-bound jobs, or even priority inversion

How to avoid this?


Idea 2: Introduce “target latency”

Period of time over which every thread should get some CPU cycles

Define quantum = target-latency/n

Every target-latency period, 


Each thread gets at least a quantum worth of CPU time



An ideal scheduler?
Scheduling decision: 


Among all “ready” threads

If a thread has not been scheduled for target-latency time


Schedule it for a quantum worth of CPU time 

Where quantum = target-latency/n


Else, choose the thread with minimum CPU time so far

Problem?


Target latency = 20 ms, 200 threads

Each thread gets 0.1ms of CPU time

Large context switching overheads


Idea 3: introduce a “minimum granularity”

Minimum time a thread must run, when scheduled



An ideal scheduler?
Scheduling decision: 


Among all “ready” threads

If a thread has not been scheduled for target-latency time


Schedule it for X worth of CPU time 

Where X = maximum (quantum, min. granularity)


Else, choose the thread with minimum CPU time so far


Problem?

Target latency = 20ms, minimum granularity = 1ms, 20,000 threads


Each thread gets 1ms worth of CPU time

But….


Some thread may have to wait for 20,000ms.

Back to being problematic for I/O and interactive jobs.



An ideal scheduler?
We have been using priorities the wrong way all along


We should use priorities to reflect “share” rather than preference

nice jobs: willing to give up for important jobs

nice values range from -20 to 19

If you are nice(r)—higher nice value—you will let important tasks run


Idea 3: Assign CPU cycles to threads using priorities as “weights"

Each nice value is assigned a weight


Weight ~ 1024/(2)nice

Share of thread i 


(its weight/(sum of all thread weights)) * target-latency



An ideal scheduler?
Scheduling decision: 


Among all “ready” threads

If a thread has not been scheduled for target-latency time


Schedule it for X worth of CPU time 

Where X = maximum (thread’s share, min. granularity)

Where thread’s share depends on 


thread’s nice value & other threads’ nice value

Else, choose the thread with minimum CPU time so far


Problem? 

Starvation for CPU-bound jobs if new I/O jobs keep arriving

Solution to starvation problem: FCFS queues!



An ideal scheduler?
Scheduling decision: 


Among all “ready” threads

If a thread has not been scheduled for target-latency time


Add it to a FCFS queue

Schedule the head of the queue for X worth of CPU time 

Where X = maximum (thread’s share, min. granularity)

Where thread’s share depends on 


thread’s nice value & other threads’ nice value

Else, choose the thread with minimum CPU time so far


Would this work for all mix of jobs?

Let us see!



An ideal scheduler? Example 1
Among all “ready” threads


If a thread has not been scheduled for target-latency time

Add it to a FCFS queue

Schedule the head of the queue for X worth of CPU time 

Where X = maximum (thread’s share, min. granularity)

Where thread’s share depends on 


thread’s nice value & other threads’ nice value

Else, choose the thread with minimum CPU time so far


Target latency = 20ms, Minimum granularity = 1ms

Two CPU-bound jobs (nice = 20)


Each thread’s share = (1/2)*20 = 10ms! 

Each thread runs for 10ms, before the other gets CPU!



An ideal scheduler? Example 2
Among all “ready” threads


If a thread has not been scheduled for target-latency time

Add it to a FCFS queue

Schedule the head of the queue for X worth of CPU time 

Where X = maximum (thread’s share, min. granularity)

Where thread’s share depends on 


thread’s nice value & other threads’ nice value

Else, choose the thread with minimum CPU time so far


Target latency = 20ms, Minimum granularity = 1ms

A CPU-bound jobs (nice value = 20), and an I/O job (nice value = -19)


Thread shares will be: tiny (cpu-bound job), large (I/O job)

CPU-bound job can block I/O job for at most target-latency

I/O job will not block CPU-bound job—will go to sleep/block



An ideal scheduler?
Among all “ready” threads


If a thread has not been scheduled for target-latency time

Add it to a FCFS queue

Schedule the head of the queue for X worth of CPU time 

Where X = maximum (thread’s share, min. granularity)

Where thread’s share depends on 


thread’s nice value & other threads’ nice value

Else, choose the thread with minimum CPU time so far


Very close to today’s Linux CFS scheduler!

The only difference is Linux does scheduling on “virtual runtimes”


Rather than real CPU times (implementation issue)

Nicer job => lower weight => virtual runtime increases more quickly

Less Nicer job => higher weight => virtual runtime increases less quickly



Houston,

We have a CPU scheduler!

Designed by you!

Pretty close to ideal ….

Actually used by millions today …


You now know CPU scheduling

Network/Disk/… scheduling very similar



Concurrency	

And	

Synchronization



Concurrency	and	Synchronization

• Threads	cooperate	in	multithreaded	processes	

• To	share	resources,	access	shared	data	structures	

• e.g.,	threads	accessing	a	memory	cache	in	a	web	server	

• Also,	to	coordinate	their	execution	

• E.g.,	a	disk	reader	thread	reads	a	block	of	data	and	…	

• hands	off	the	blocks	to	a	network	writer	thread



Concurrency	and	Synchronization

• For	correctness,	we	have	to	control	this	cooperation	

• Must	assume	threads	interleave	executions	arbitrarily	

• Must	assume	threads	execute	at	different	speeds	

• Modern	CPU	schedulers	are	preemptive	

• Modern	servers	are	multicore	

• CPU	scheduling	is	not	under	application	writer’s	control	

• Synchronization:	the	process	of	coordination	between	multiple	threads	

• Enables	us	to	carefully	restrict	the	interleaving	of	executions	

• Note:	this	applies	also	to	processes,	not	just	threads



Shared	resource

• We	will	focus	on	coordinating	access	to	shared	resources	

• Basic	problem:	

• Two	(or	more)	concurrent	threads	are	accessing	a	shared	variable	

• Both	threads	may	read/modify/write	the	variable	

• The	results	must	be	deterministic	

• Multiple	runs	should	get	the	same	output	

• Over	the	next	few	lectures:	

• Why	is	this	a	hard	problem?	

• What	are	the	basic	mechanisms	to	solve	this	problem?	

• Applying	basic	mechanisms	to	different	scenarios



Example	1:	The	racing	threads

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);

Which	thread	wins?	
(Suppose	Thread	A	is	scheduled	at	t=0)



Example	1:	The	racing	threads

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Whats	happening	under	the	hood	(inside	the	loop)?	

(If	each	thread	were	the	only	thread	running)

rB = 0 <- load rB, value
rB = -1 <- sub rB, rB, 1
value = -1 <- store rB, value

rA = 0 <- load rA, value
rA = 1 <- add rA, rA, 1
value = 1 <- store rA, value

Time

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);



Example	1.1:	The	racing	threads	(one	possible	scenario)

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Whats	happening	under	the	hood	(inside	the	loop)?	

(If	threads	were	running	concurrently)

rB = 0 <- load rB, value

rB = -1 <- sub rB, rB, 1

value = -1 <- store rB, value

rA = 0 <- load rA, value

rA = 1 <- add rA, rA, 1

value = 1 <- store rA, value

Whats	value	after	these	executions?Time

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);



Example	1.2:	The	racing	threads	(another	possible	scenario)

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Whats	happening	under	the	hood	(inside	the	loop)?	

(If	threads	were	running	concurrently)

rB = 0 <- load rB, value

rB = -1 <- sub rB, rB, 1
value = -1 <- store rB, value

rA = 0 <- load rA, value

rA = 1 <- add rA, rA, 1

value = 1 <- store rA, value

Whats	value	after	these	executions?Time

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);



The	crux	of	the	problem

• Two	concurrent	threads	(or	processes)	

• Accessing	a	shared	resource	(account)	

• Without	any	coordination—with	“synchronization"	

• Lack	of	synchronization	

• Creates	race	conditions	

• Non-deterministic	outputs,	depending	on	thread	scheduling	

• In	scenarios	involving	Shared	resources	+	concurrent	execution	

• We	need	mechanisms	for	synchronization	

• Ensure	that	we	can	reason	about	execution	outputs	

• Ensure	deterministic	outputs



Recall:	what	resources	are	shared?

• Local	variables	are	not	shared	

• Refer	to	data	on	the	stack,	each	thread	has	its	own	stack	

• Never	pass/share	a	pointer	to	a	local	variable	to	other	thread’s	stack	

• Global	variables	are	shared	

• Stored	in	the	static	data	segment,	accessible	by	any	thread	

• Dynamic	objects	are	shared	

• Stored	in	the	heap,	shared	if	you	can	name	it



Example	1:	Potential	solution?

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

value = value - 1;
If (value == -1)

print (“Thread B wins”);

value = value + 1;
If (value =/= -1)

print (“Thread A wins”);

Make value “unreadable/unwritable”
value = value - 1;
Make value “readable/writable”
If (value == -1)

print (“Thread B wins”);

Make value “unreadable/unwritable”
value = value + 1;
Make value “readable/writable”
If (value =/= -1)

print (“Thread A wins”);

Which	thread	wins?	
(Suppose	Thread	A	is	scheduled	at	t=0)



Example	2:	The	complicated	racing	threads

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

while (value > -10)
value = value - 1;

print (“Thread B wins”);

while (value < 10)
value = value + 1;

print (“Thread A wins”);

Which	thread	wins?	
(Suppose	Thread	A	is	scheduled	at	t=0)



Example	2:	Potential	solution?

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

while (value > -10)
Make value “unreadable/unwritable”
value = value - 1;
Make value “readable/writable”

print (“Thread B wins”);

while (value < 10)
Make value “unreadable/unwritable”
value = value + 1;
Make value “readable/writable”

print (“Thread A wins”);

while (value > -10)
value = value - 1;

print (“Thread B wins”);

while (value < 10)
value = value + 1;

print (“Thread A wins”);

Which	thread	wins?	
(Suppose	Thread	A	is	scheduled	at	t=0)



Example	2:	Potential	solution?

Two	threads:	Thread	A	and	Thread	B,	operating	on	a	shared	variable	value	(initiated	to	0)

Make value “unreadable/unwritable”
while (value > -10)

value = value - 1;
print (“Thread B wins”);
Make value “readable/writable”

Make value “unreadable/unwritable”
while (value < 10)

value = value + 1;
print (“Thread A wins”);
Make value “readable/writable”

while (value > -10)
value = value - 1;

print (“Thread B wins”);

while (value < 10)
value = value + 1;

print (“Thread A wins”);

Which	thread	wins?	
(Suppose	Thread	A	is	scheduled	at	t=0)



Example	3:	The	real-world	ATM	banking	example

• Suppose	we	want	to	implement	a	function	to	do	the	following	

• There	is	a	bank	account	(shared	resource)	

• Shared	by	you	and	your	significant	other	(threads)	

• Each	of	you	can	operate	independently	(e.g.,	at	different	ATM)	

• Here	is	one	template	for	withdraw:	

int withdraw (account, amount) {
             read_balance (account);
             balance = balance - amount;
             write_balance (account, balance); 
             return balance;
} 

• Suppose	the	initial	balance	is	$1000	

• Both	of	you	go	to	separate	ATM	machines,	and	withdraw	$500	

• What	happens?



Initial	balance:	$1000;	both	of	you	execute	withdraw (account, 500) at the same time

int withdraw (account, amount) {
balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

} 

int withdraw (account, amount) {
balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance); 
return balance;

}

Example	3:	The	real-world	ATM	banking	example



Initial	balance:	$1000;	both	of	you	execute	withdraw (account, 500) at the same time

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance); 
return balance;

Example	3:	The	real-world	ATM	banking	example



Initial	balance:	$1000;	both	of	you	execute	withdraw (account, 500) at the same time

Time • What	is	the	final	balance?	

• 500?	1000?	0?	

• Everyone	is	happy!

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance); 
return balance;

Example	3.1:	The	real-world	ATM	banking	example



Initial	balance:	$1000;	both	of	you	execute	withdraw (account, 500) at the same time

• What	is	the	final	balance?	

• 500?	1000?	0?	

• Bank	goes	berserk!

Time

balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
return balance;

balance = read_balance (account);
balance = balance - amount;

write_balance (account, balance); 
return balance;

Example	3.2:	The	real-world	ATM	banking	example



Initial	balance:	$1000;	both	of	you	execute	withdraw (account, 500) at the same time

int withdraw (account, amount) {
Freeze account;
balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance);
Unfreeze account;
return balance;

} 

int withdraw (account, amount) {
Freeze account;
balance = read_balance (account);
balance = balance - amount;
write_balance (account, balance); 
Unfreeze account;
return balance;

}

Example	3:	Potential	solution?

Why	is	return	outside	of	freeze/unfreeze?	
Is	that	still	correct?



You	in	your	lovely,	cozy,	non-shared	apartment

Look in fridge. Out of milk.
Leave for store.
Arrive at store.
Buy milk.
Arrive home. Put milk in fridge.

Example	4:	Too-much-milk	problem

Drink	milk,	be	strong!

3:00
3:05
3:10
3:15
3:20
3:25
3:30



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Look in fridge. Out of milk.
Leave for store.
Arrive at store.
Buy milk.
Arrive home. Put milk in fridge.

Look in fridge. Out of milk.
Leave for store.
Arrive at store.
Buy milk.
Arrive home. Put milk in fridge.

Example	4:	Too-much-milk	problem

Too	much	milk!

3:00
3:05
3:10
3:15
3:20
3:25
3:30



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Milk) {
Buy milk;

}

If (no Milk) {
Buy milk;

}

Example	4:	Too-much-milk	problem

Too	much	milk!



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Milk) {
If (no Note) {

Leave note;
Buy milk;
Remove note;

}
}

If (no Milk) {
If (no Note) {

Leave note;
Buy milk;
Remove note;

}
}

Example	4:	Potential	solution?	Attempt	1

Attempt	1:	Let	us	try	the	“freezing”	idea

Does	this	work?



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Milk) {
If (no Note) {

Leave note;
Buy milk;
Remove note;

}
}

If (no Milk) {

If (no Note) {
Leave note;
Buy milk;
Remove note;

}
}

No!

Example	4:	Potential	solution?	Attempt	1



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Attempt	2:	Let	us	get	smarter:	freeze	first

Does	this	work?

Example	4:	Potential	solution?	Attempt	2



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Leave note;
If (no Milk) {

If (no Note) {
Buy milk;

}
}
Remove note;

Nobody	ever	buys	milk!

No!

Example	4:	Potential	solution?	Attempt	2



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (Note) {
If (no Milk) {

Buy milk;
}
Remove Note;

}

If (no Note) {
If (no Milk) {

Buy milk;
}
Leave note;

}

Attempt	3:	May	be	different	interpretations	of	notes

Does	this	work?

Example	4:	Potential	solution?	Attempt	3



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

If (no Note) {
If (no Milk) {

Buy milk;
}
Leave note;

}

No!	Starvation!

Example	4:	Potential	solution?	Attempt	3



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;
If (no noteA) {

If (no Milk) {
Buy milk;

}
}
Remove noteB;

Leave noteA;
If (no noteB) {

If (no Milk) {
Buy milk;

}
}
Remove noteA;

Attempt	4:	Perhaps	two	notes?

Does	this	work?

Example	4:	Potential	solution?	Attempt	4



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;

If (no noteA) {
If (no Milk) {

Buy milk;
}

}
Remove noteB;

Leave noteA;

If (no noteB) {
If (no Milk) {

Buy milk;
}

}
Remove noteA;

Even	worse!	Lockup,	deadlock,	starvation!

Example	4:	Potential	solution?	Attempt	4



You	and	your	(partly	crazy)	roommate	in	your	not-so-lovely,	not-so-cozy	apartment

Leave noteB;
While (no noteA) {

Do nothing;
}

If (no Milk) {
Buy milk;

}
Remove noteB;

Leave noteA;
While (noteB) {

Do nothing;
}

If (no Milk) {
Buy milk;

}
Remove noteA;

Attempt	5:	What	are	we	missing?	

“If	roommate	is	not	doing	something,	I	should	do	it”

Does	this	work?

Example	4:	Potential	solution?	Attempt	5

“If	roommate	is	doing	something,	I	should	not	do	it”




