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Context	for	today’s	lecture

• By	the	end	of	today’s	lecture,	you	will	know	most	of	the	basic	terminology	in	OS	

• Virtual	cores	(threads)	and	processes	

• Thread/Process	control	blocks,	stacks,	PC,	SP,	…		

• Address	space,	and	translation	

• Files,	pipes	and	sockets	(today)	

• Interrupts,	system	calls,	signals	(today)	

• And	you	already	understand	some	basic	ideas	in	protection/isolation/sharing	

• Dual	mode	operations	

• You	will	be	ready	for	a	deep	dive	into	OS	mechanisms:	

• Synchronization	and	scheduling	

• Memory	management	(including	address	translation)	

• Storage	stack	

• Network	stack



Goal	of	Today’s	Lecture

• Revisit	“Everything	is	a	file”	idea	

• Third	set	of	abstractions:	Files,	Pipes	and	Sockets	

• Understand	interrupts	and	signals	

• Understand	the	life	cycle	of	a	process



Abstraction	III:	I/O	



Recap:	Everything	is	a	“File”

• A	radical	idea	

•Proposed	by	Dennis	Ritchie	and	Ken	Thompson	in	1974	

• In	their	seminal	paper	on	UNIX	called	“The	UNIX	Time-Sharing	System”	

• Core	idea:	we	should	have	identical	interfaces	for:	

•Files	on	disk	
•Networking	(sockets)	
•Devices	(terminals,	printers,	etc.)	

• Local	interprocess	communication	(pipes,	sockets)



File

• Named	collection	of	data	

• Has	a	name:	readable	by	humans	

• Has	a	file	descriptor:		

• unique	identifier	(handle)	used	by	a	process	to	identify	an	opened	file	

•May	have	data:	Text,	binary,	serialized	objects,	…	

•Has	associated	metadata:	size,	modification	time,	access	control,	etc.	

• Can	execute	system	calls	to	perform	operations:	

• 	open(),	read(),	write(),	and	close()	

• And	many	others	…	

• Kernel	ensures	protection



Key	Design	Ideas

• Uniformity:	everything	is	a	file	

• open()	before	use:	Provides	opportunity	for	access	control	and	arbitration	

• Byte-oriented:	Least	common	denominator	

•OS	hides	underlying	details:	
•Block-based	data	transfers?	Sure.		
•Stream	data	transfers?	Sure.	

•Kernel	buffered	read()	and	write()	
•Helpful	to	make	everything	byte-oriented	

•Process	is	blocked	while	waiting	for	return	
•Complete	in	background	

•Writes	return	immediately	

•Enables	a	“global”	buffer	management	(eg.,	taking	caches	into	account)	

• Explicit	close()



Interprocess	Communication

•What	if	two	processes	wish	to	communication	with	one	another?	

•What	are	the	possible	options?	

• One	option:	shared	memory	address	space	
• Processes	read/write	to	this	shared	address	space	w/o	kernel	intervention	
•Potential	protection	violation	

• Another	option:	use	a	file	(on	slower	storage)	

•Producer	process	writes	to	a	file;	consumer	process	reads.	

•Kernel	mediates	read/write	operations	

•Protection	guaranteed	by	the	kernel	
•Problem?	

•High	overheads	

• Other	options:	IPC	and	Sockets



“Pipes”	for	Interprocess	Communication

•Create	an	in-memory	queue	

• Data	written	by	producer	process	is	written	to	the	queue	

• Consumer	processes	can	read	from	the	queue	

• Use	a	file	interface	to	enable	reads	and	writes	
• Use	two	file	descriptors:	one	for	each	of	read	and	write	

• Ask	the	kernel	to	execute	operations	via	syscalls.	

•Questions	
•What	if	A	generates	data	faster	than	B	can	consume	it?	

•What	if	B	consumes	data	faster	than	A	generates	it?	

• Solution:	
• It	is	okay—file	read	and	write	operations	are	blocking.	

•This	queue	is	called	a	“pipe”



“Sockets”	for	Remote	Interprocess	Communication

•What	if	the	two	processes	are	running	on	two	different	physical	servers?	

•With	a	network	sitting	in	the	middle?	

• What	could	we	do?	

• Sockets!	
• Similar	to	pipe,	is	a	file	

•Create	an	in-memory	queue/file	at	each	process	

• Sending	process	writes	to	its	queue	(via	kernel	mediation)	

•Kernel	transfers	data	to	the	other	queue	
•Reading	process	reads	from	its	queue	

•OS	enables	correctness:	ensures	the	two	queues	have	the	same	“view”	

•The	same	data	and	the	same	ordering	

•Using	a	reliable,	in-order,	data	delivery	protocol	over	the	network



Interrupts	and	Signals



Interrupts

A	response	by	the	processor	to	an	event	that	needs	attention	from	software	

• Some	events	trigger	an	interrupt	condition	that	alerts	the	processor	

• “When	permitted,	please	interrupt	the	currently	executing	code”	

• So	that	the	event	can	be	processed	in	a	timely	manner	

•Upon	receiving	an	interrupt,	response	by	the	processor		
• Suspends	its	current	activities,	whenever	safe	
• Saves	its	state	
•Executes	a	function	called	interrupt	handler	
•Resumes	operations	once	interrupt	handler	finishes	

• Interrupts	can	be:	
•Maskable:	Can	by	turned	off	by	the	CPU	for	critical	processing	

•Non-maskable:	Indicate	serious	errors	

•E.g.,	power	out	warning,	unrecoverable	memory	error,	etc.



Exceptions 

“Software interrupts”

process missteps (e.g. division by zero)

attempt to perform a privileged instruction


sometime on purpose! (breakpoints)

synchronous/non-maskable

Type	of	interrupts	(slightly	misusing	the	terminology)

Hardware Interrupts

HW device requires OS service


timer, I/O device, interprocessor 

asynchronous/maskable

System calls/traps

requests OS service

synchronous/non-maskable



Interrupt	handling

•Two	objectives	
•Handle	the	interrupt	and	remove	the	cause	

•Restore	whatever	was	running	before	the	interrupt	
• Saved	state	may	have	been	modified	on	purpose	

•Two	“actors”	in	handling	the	interrupts	
•The	hardware	goes	first	
•The	kernel	code	takes	control	by	running	the	interrupt	handler



Review: stack (aka call stack)
int main(argc, argv){ 
	 … 
	 f(3.14) 
	 … 
} 

int f(x){ 
	 … 
	 g(); 
	 … 
} 

int g(y){ 
	 … 
}

stack frame for 
main()

stack frame for 
f()

stack frame for 
g()

PC

SP

FP

arguments (3.14)

return address

local variables

saved registers

saved FP (main)

scratch space

user 
stack



A	tale	of	two	Stack	Pointers

• Interrupt	Handler	is	a	block	of	code:	it	needs	a	stack!	
• So,	each	process	has	two	stack	pointers	(SP)	

•One	when	running	in	the	user	mode	

•A	second	one	when	running	in	the	kernel	mode	

•Why	not	use	the	user-level	SP?	

•User	SP	cannot	be	trusted	



Handling	interrupts

•Hardware:	Upon	an	interrupt,	the	hardware	
• Sets	supervisor	mode	(if	not	already	set)	

•Disable	(masks)	interrupts	

• Pushes	PC,	SP,	etc.	on	interrupt	stack	
• Sets	PC	to	point	to	the	first	instruction	of	the	appropriate	interrupt	handler	

•Depends	on	interrupt	type	
• Specified	in	an	interrupt	vector	(loaded	at	boot	time)	

• Software:	We	are	now	running	the	interrupt	handler	

•Pushes	the	registers’	contents	(for	user	process)	to	the	interrupt	stack	
•Need	registers	to	run	the	interrupt	handler	
•Only	saves	necessary	registers		
•That	is	why	done	in	software,	not	hardware



Typical Interrupt 
Handler Code

HandleInterruptX:

PUSH %Rn

PUSH %R1
…

CALL _handleX

POP %R1

POP %Rn
…

}

} restore the registers saved above

only need to save registers not 
saved by the handler function

RETURN_FROM_INTERRUPT



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

EFLAGS

Other 
Registers:

EAX, EBX, 


...

SS

Stack segment

CS

Code segment Stack 
pointer

Program 

counter

Flags



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

EFLAGS

SS
CS

Stack 
pointer

Program 

counter

Flags

Hardware performs these steps



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

EFLAGS

SS

CS

Hardware performs these steps



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

EFLAGS

SS

CSHardware performs these steps



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

EFLAGS

SS

CSHardware performs these steps



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

EFLAGS

SS

CS

Error

Hardware performs these steps



Software (handler) performs this step

Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

EFLAGS

SS

CS

Error

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

7. Transfer control to interrupt handler

Hardware performs these steps

8. Handler pushes select registers on stack



1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

7. Transfer control to interrupt handler

Hardware performs these steps

Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

EFLAGS

SS

CS

Error

8. Handler pushes select registers on stack
Software (handler) performs this step



Interrupt Handling 

on x86

User-level

Process Registers Kernel

Code
foo() {

  while(...) {

    x = x+1;

    y = y-2

   }

}


Stack

Code

handler() {

  pusha

   ...

}


Interrupt Stack

Other 
Registers:

EAX, EBX, 


...

EFLAGS

SS
CS

EFLAGS

SS

CS

Error

Select Registers:

SS, ESP, EAX, 

EBX,...

8. Handler pushes select registers on stack
Software (handler) performs this step

1. Change mode bit

2. Disable interrupts

3. Save key registers to temporary location

4. Switch onto the kernel interrupt stack

5. Push key registers onto new stack

6. Save error code (optional)

7. Transfer control to interrupt handler

Hardware performs these steps



Interrupt	safety

•Kernel	should	disable	device	interrupts	as	little	as	possible	
• Interrupts	are	best	serviced	quickly	

• Thus,	device	interrupts	are	often	disabled	selectively	
• e.g.,	clock	interrupts	enabled	during	interrupts	for	I/O	handling	

• This	leads	to	potential	race	conditions	
• System’s	behavior	depends	on	timing	of	uncontrollable	events



System	calls

•Programming	interface	to	the	services	that	the	OS	provides	
• Create	new	processes	
• Create/read/write/delete	files	
• Send/receive	data	over	sockets	
•…



The Narrow Waist

System call 

interface

Portable OS Kernel

Portable OS Library

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

1802.11 a/b/g/n SCSI

Graphics accellerators LCD Screens

Web Browsers Email

Databases Word Processing
Compilers

Web Servers
Simple and powerful 
interface allows 
separation of concern


Eases innovation in 
user space and HW


“Narrow waist" makes it

highly portable

robust (small attack 
surface)


Internet IP layer also 
offers the narrow waist

Much care spent in 
keeping interface secure


e.g., parameters first 
copied to kernel space, 
then checked 


to prevent user program 
from changing them 
after they are checked!



Executing	a	system	call

•Process	
• Calls	system	call	function	in	library	

• Places	arguments	in	registers	and/or	pushes	them	onto	user	stack	

• Places	syscall	type	in	a	dedicated	register	
• Executes	syscall	machine	instruction	

• Kernel	
• Executes	syscall	interrupt	handler	
• Places	result	in	dedicated	register	
• Executes	return_from_handler	

• Process	
• Executes	return_from_function



Executing read System Call
int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
} stack frame 


for main()

UPC

USP

KSP

user 
stack

interrupt

stack

user space

kernel space

UPC: user program counter

USP: user stack pointer


 note: interrupt stack is empty while process running

KPC: kernel program counter

KSP: kernel stack pointer



int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

Executing read System Call

stack frame 

for main()

USP

KSP

user space

kernel space

UPC: user program counter

USP: user stack pointer

 note: interrupt stack is empty while process running

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

interrupt

stack

UPC

KPC: kernel program counter

KSP: kernel stack pointer



Executing read System Call

stack frame 

for main()

USP

KSP

user space

kernel space

stack frame 

for _read

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

UPC

interrupt

stack

int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

UPC: user program counter

USP: user stack pointer

 note: interrupt stack is empty while process running

KPC: kernel program counter

KSP: kernel stack pointer

return address



Executing read System Call

stack frame 

for main()

USP

KSP

user space

kernel space

stack frame 

for _read

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

UPC

HandleIntrSyscall: 
push %Rn 
… 
push %R1 
call __handleSyscall	  
pop %R1 
… 
pop %Rn 
return_from_interrupt

KPC

interrupt

stack

int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

return address



Executing read System Call

stack frame 

for main()

USP

KSP

user space

kernel space

stack frame 

for _read

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

UPC

HandleIntrSyscall: 
push %Rn 
… 
push %R1 
call __handleSyscall	  
pop %R1 
… 
pop %Rn 
return_from_interrupt

KPC

USP, UPC, 

PSW

interrupt

stack

int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

return address



Executing read System Call

stack frame 

for main()

USP

KSP

user space

kernel space

stack frame 

for _read

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

UPC

HandleIntrSyscall: 
push %Rn 
… 
push %R1 
call __handleSyscall	  
pop %R1 
… 
pop %Rn 
return_from_interrupt

KPC

USP, UPC, 

PSW

saved registers

interrupt

stack

int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

return address



Executing read System Call

stack frame 

for main()

USP

KSP

user space

kernel space

stack frame 

for _read

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

UPC

HandleIntrSyscall: 
push %Rn 
… 
push %R1 
call __handleSyscall	  
pop %R1 
… 
pop %Rn 
return_from_interrupt

KPC

USP, UPC, 

PSW

saved registers

interrupt

stack

int handleSyscall(int type){ 
	 switch (type) { 
	 case READ: … 
	 } 
}

int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

return address



Executing read System Call

stack frame 

for main()

USP
KSP

user space

kernel space

stack frame 

for _read

_read: 
	 mov READ, %R0 
	 syscall 
	 return

user 
stack

UPC

HandleIntrSyscall: 
push %Rn 
… 
push %R1 
call __handleSyscall	  
pop %R1 
… 
pop %Rn 
return_from_interrupt

KPC

USP, UPC, 

PSW

saved registers

interrupt

stack

int handleSyscall(int type){ 
	 switch (type) { 
	 case READ: … 
	 } 
}

stack frame for 
handleSyscall()

int main(argc, argv){ 
	 … 
	 c = read(fd, buffer, nbytes) 
	 … 
}

return address

return address



Signals

ID Name Default	Ac.on Corresponding	Event

2 SIGINT Terminate
Interrupt	

(e.g.,	CTRL-C	from	keyboard)

9 SIGKILL Terminate
Kill	program	

(cannot	override	or	ignore)

14 SIGALRM Terminate Timer	signal

17 SIGCHLD Ignore Child	stopped	or	terminated

20 SIGSTP
Stop	un.l	
SIGCONT

Stop	signal	from	terminal	
(e.g.,	CTRL-Z	from	keyboard)

• Signals	are	virtualized	Interrupts	
• Asynchronous	notifications	in	user	space	
• Some	examples:



Receiving	a	signal

•Each	signal	prompts	one	of	these	default	actions	
• Terminate	the	process	

• Ignore	the	signal	
• Terminate	the	process	and	dump	core	

• Stop	the	process	
• Continue	the	process,	if	stopped	

• Signal	can	be	“caught”	by	executing	a	user-level	function	called	signal	handler	
• Similar	to	exception	handler	invoked	in	response	to	an	asynchronous	interrupt	

• Process	could	also	be	suspended	waiting	for	a	signal	to	be	caught	
• (Synchronously)



Context	switch



Multiple	concurrent	processes

•How	to	yield	from	one	process	to	another?	

• “switch”	from	executing	the	Current	process	to	some	other	READY	process	
• Current	process:	RUNNING—>READY	

•Next	process:	READY—>RUNNING	

• Steps	involved:	
• Save	kernel	registers	of	Current	on	its	interrupt	stack	
• Save	kernel	stack	pointer	of	Current	in	it	PCB	
• Restore	kernel	stack	pointer	of	Next	from	its	PCB	

• Restore	kernel	registers	of	Next	from	its	interrupt	stack



Three	flavors	of	context	switch

• Interrupt:	from	user	to	kernel	space	
•On	system	call,	exception,	or	interrupt	

• Stack	switch:	process	X	user	stack	—>	process	X	interrupt	stack	

• Yield:	between	two	processes,	inside	kernel	
• From	one	PCB/interrupt	stack	to	another	

• Stack	switch:	process	X	interrupt	stack	—>	process	Y	interrupt	stack	

• Return	from	interrupt:	from	kernel	to	user	space	

• Stack	switch:	process	X	interrupt	stack	—>	process	X	user	stack



Switching between 
Processes

Process 1 Process 2

User

Space

Kernel

Space

1. Save Process 1 user registers

2. Save Process 1 kernel registers 

and restore Process 2  kernel 
registers


3. Restore Process 2 user registers

read(file)

1

disk_read()   2
return 
from 

interrupt

3

resume

scheduler selects 
ready process



We	are	ready	to	understand	the	life	cycle	of	a	process!



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

47



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

48

PCB: being created

Registers: uninitialized



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

49

Admitted to 

the Ready 


queue

PCB: being created

Registers: uninitialized



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

50

PCB: on the Ready queue

Registers: pushed by kernel 
code onto interrupt stack

Admitted to 

the Ready 


queue



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

51

PCB: currently executing

Registers: popped from 
interrupt stack into CPU

Admitted to 

the Ready 


queue
Dispatch



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

52

PCB: on Ready queue

Registers: pushed onto interrupt 
stack (SP saved in PCB)

Admitted to 

the Ready 


queue
Dispatch

Yield



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

53

Admitted to 

the Ready 


queue
Dispatch

Yield

PCB: currently executing

Registers: SP restored from 
PCB; others restored from stack



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

54

Admitted to 

the Ready 


queue
Dispatch

Yield

PCB: on specific waiting queue 
(I/O device, lock, etc.)

Registers: on interrupt stack

blocking call

e.g., read(), wait()



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

55

Admitted to 

the Ready 


queue
Dispatch

Yield

PCB: on Ready queue

Registers: on interrupt stack

blocking call

e.g., read(), wait()

blocking call

completion



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

56

Admitted to 

the Ready 


queue
Dispatch

Yield

blocking call

e.g., read(), wait()

blocking call

completion

PCB: currently executing

Registers: restored from 
PCB (SP)  and interrupt 
stack into CPU



Process Life Cycle

Ready

Init

Running

Waiting

Zombie

57

Admitted to 

the Ready 


queue
Dispatch

Yield

blocking call

e.g., read(), wait()

blocking call

completion

PCB: on Finished queue, 
ultimately deleted

Registers: no longer needed

done

exit()



Booting	an	OS

• Steps	in	booting	an	OS	
• CPU	starts	at	fixed	address	

• In	supervisor	mode,	with	interrupts	disabled	

• BIOS	(in	ROM)	loads	“boot	loader”	code	into	memory	and	runs	it	

• From	specified	storage	or	network	device		

• Boot	loader	loads	OS	kernel	code	into	memory	and	runs	it	

• Initialization	
• Determine	location/size	of	physical	memory	

• Set	up	initial	page	tables	
• Initialize	the	interrupt	vector	
• Determine	which	devices	the	computer	has	

• Initialize	“file	system”	code	

• Load	first	process	from	file	system	

• Start	first	process




