CS4410

Operating Systems

Lecture 4.
Abstractions |: Threads
Abstractions Il: Processes
Abstractions Ill: IPC

Rachit Agarwal

Goal of Today’s Lecture

* Wrap up discussion on the first abstraction: thread
* Deeper dive into the second abstraction: process

* Introduction to the third abstraction: IPC abstractions

Recall: Four Fundamental OS Concepts

* Thread: Execution Context
* A virtual core: a single, sequential execution context

* Address space (with translation)
* Program's view of memory is distinct from physical memory

* Process: an instance of a running program
* Address Space + One or more Threads + ...

 Protection/Isolation
* Only the “system” can access certain resources
* Combined with translation, isolates programs from each other

Recall: Threads

* Virtual cores: illusion of infinite processors

e Each thread executes a sequence of instructions, in order, on a physical core

* Why threads?
e Statistical multiplexing: improved utilization of physical cores

* Challenges:

* synchronization (correctness), scheduling (performance)

Recall: Address space

* Virtual address space: illusion of infinite memory

* Why virtual address space?
o Statistical multiplexing: improved utilization of physical memory

* Protection/Isolation (not yet covered)

* Challenges?
e Efficient address translation

Recall: Process

* Execution environment with restricted rights: lllusion of a machine
* One or more threads
* Execution state: everything that can affect, or be affected by, a thread
* Code, data, registers, call stack, files, sockets, etc.
* Part of the process state is “owned” by individual threads
* Part is shared among all threads in the process

* Why processes?
e Statistical multiplexing: improved utilization of physical resources

* Challenges?
 Protection/isolation/sharing

Recall: Protection/Isolation

* Virtualization (address space, in particular)

* Dual mode operations
* Hardware provides at least two modes of operations:
e Kernel mode (or “supervisor” / “protected” mode)
* User mode

* Processes execute in user mode

e “Controlled” transitions between user mode and kernel mode

» System calls, interrupts, exceptions

Recall: Need for Threads

e Consider the following program:

main() {
ComputePI();
PrintClassList(“classlist.txt”);

}

e The program would never print out class list:

e ComputePI would never finish

Recall: With Threads

e Version of program with threads (loose syntax):

main() {
create thread(ComputePI());
create_thread(PrintClassList(“classlist.txt”));

}

e Now, you would actually see the class list
e But only “now and then”

e lllusion: infinite number of processors (potentially varying speeds)

e create thread: Spawns a new thread running the given procedure

e Should behave as if another CPU is running the given procedure

Questions?

Wrapping up Abstraction I: Threads

Multithreaded Programs

e When you compile a C program and run the executable

e |t creates a process that is executing that program

e |nitially, this new process has one thread in its own address space

e With code, globals, etc. as specified in the executable

e How can we make a multithreaded process?
e A process can issues syscalls to create new threads
e These new threads are part of the process:
e They share its address space

New ldea: Fork-Join Pattern

=== = -

A\ ! . Y exit

* Main thread creates (forks) collection of sub-threads passing them args to work on...

* ...and then joins with them, collecting results.

Memory Layout with Two Threads

e Two sets of CPU registers

e Two sets of stacks

® [ssues:
e How do we position stacks relative to each other?
e What maximum size should we choose for the stacks?
e What happens if threads violate this?

OxFFF...

e How might you catch violations? Stack 1
v
>
Stack 2 2
¥ 0
&
A ©
| Q
(@)
Heap @
Global Data
Code
0x000...

Thread Abstraction

Programmer Abstraction
r = T - _l ______ |
Threads | S S | S S S
12 131415

| | | | |

Processors | fr?' ko)ﬂ777':)mn': Jrrr?
3 4 5

I N

Physical Reality

| S | S IS S S
: 1 :2 :3 4 5
' | b
| | I
L _1 _|_2_ J

Running Ready
Threads Threads

e lllusion: infinite number of processors, potentially varying speeds

e Reality: threads execute with variable “speed”

e Why?

e Depends on scheduling policies

e Programs must be designed to work with any schedule

Programmer vs. Processor View

Programmer’s Possible
View Execution
#1
X=X+1; X=X+1;
y=Yy+X; y=Yy+X;
Z=X+5y; Z=X+ 5y,

Possible
Execution
#2

thread is suspended
other thread(s) run
thread is resumed

Possible
Execution
#3

X=X+ 1
y=Yy+X

thread is suspended
other thread(s) run

thread is resumed

Correctness with Concurrent Threads

e Goal: Correctness by Design
e \What makes this a challenging goal?

e Non-determinism:

e Scheduler can run threads in any (non-deterministic) order
e Why?

e Scheduler can switch threads at any time
e Why?

e Independent Threads
e No state shared with other threads

e Deterministic, reproducible conditions

e Cooperating Threads

e Shared state between multiple threads

Race Conditions

* Initially x==0and y ==

Thread A Thread B
x = 1; Y = 2;

* What are the possible values of x below after all threads finish?

e Must be 1. Thread B does not interfere with Thread A.

Race Conditions

* Initially x ==0and y ==

Thread A Thread B
x =y + 1; Y=27
Y=Y * 2;

 What are the possible values of x below?
1 or3or5 (non-deterministic)

e Race Condition: Thread A “races” against Thread B!

Abstraction ll: Processes

Recall: Process

* Definition: execution environment with restricted rights
* One or more threads
* Execution state: everything that can affect, or be affected by, a thread
* Code, data, registers, call stack, files, sockets, etc.
* Part of the process state is “owned” by individual threads
* Part is shared among all threads in the process

Process control block (PCB)

* Each process has a “state” —Process control block (PCB)
* Execution state for each thread
* Scheduling information
* Information about memory used by the process

* Information about files, sockets, etc.

Processes

* How to manage process state?

ow to create a process?
ow to manage process state?
ow to exit from a process?

« Remember: Everything outside of

the kernel is running in a process!

* Processes are created and

managed... by processes!

code

data

files

code

data

files

registers

stack

registers

registers

registers

thread —» ;

stack

stack

stack

single-threaded process

%

?

gﬁ

— thread]

multithreaded process

Processes

* Processes are created and managed by
* processes!
* Hhhmm. How does the first process start?
* By the kernel
e Often configured as an argument to the kernel
* Before the kernel boots
* Often called the “init” process
 After this, all processes are created by other processes

Process Management
* exit — terminate a process
 fork — copy the current process
* exec — change the program being run by the current process
* walt — wait for a process to finish
« kill — send a signal (interrupt-like notification) to another process

* sigaction — set handlers for signals

Process Management
* exit — terminate a process
 fork — copy the current process
* exec — change the program being run by the current process
* walt — wait for a process to finish
« kill — send a signal (interrupt-like notification) to another process

* sigaction — set handlers for signals

exit ()

 Called after process terminates
* Deallocates memory
» Destructs most OS data structures

* Closes open files

exit()

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char *argv[])

{

/* get current processes PID */
pid_t pid = getpid();
printf("My pid: %d\n", pid);

exit (0);

Q: What if we let main return without ever calling exit?
* The OS Library calls exit() for us!
* The entry point of the executable is in the OS library
* OS library calls main
* If main returns, OS library calls exit

Process Management
* exit — terminate a process
 fork — copy the current process
* exec — change the program being run by the current process
* walt — wait for a process to finish
« kill — send a signal (interrupt-like notification) to another process

* sigaction — set handlers for signals

fork ()

* Used to create processes—copy the current process

* New “child” process has a different process ID (pid) AND a single thread

* New “child” process is a clone:

e State of original process duplicated in both parent and child process

* Returns twice (!), to both the parent and the child process
* Sets pid to different values (return value from fork(): pid)
* When >0
* Running in original (parent) process
* Return value is child’s process pid
* When=0
* Running in new child process
* When< 0
* Error (must handle somehow)

* Running in parent process

fork() example

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {

pid t cpid, mypid;

pid t pid = getpid(); /* get current processes PID */

printf("Parent pid: %d\n", pid);

cpid = fork();

if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror("Fork failed");

Process Management
* exit — terminate a process
 fork — copy the current process
* exec — change the program being run by the current process
* walt — wait for a process to finish
« kill — send a signal (interrupt-like notification) to another process

* sigaction — set handlers for signals

exec (program, arguments)

* Used to run program in the current process with specified arguments
* Load program into address space
* Copy arguments into address space’s memory

e Start execution at ‘start”’

Process Management
* exit — terminate a process
 fork — copy the current process
* exec — change the program being run by the current process
e walt — wait for a process to finish
« kill — send a signal (interrupt-like notification) to another process

* sigaction — set handlers for signals

wait ()

* Causes the parent process to wait until the child process terminates
* Parent gets return value from child

* If no children alive, wait() returns immediately

* Different from exit()
o exit() called after process terminates

Abstraction lll: 1/O

Everything is a “File”

¢ A radical idea
* Proposed by Dennis Ritchie and Ken Thompson in 1974
*In their seminal paper on UNIX called “The UNIX Time-Sharing System”

¢ Core idea: we should have identical interfaces for:
*Files on disk
* Networking (sockets)
* Devices (terminals, printers, etc.)

 Local interprocess communication (pipes, sockets)

e Based on the system calls open(), read(), write(), and close()

Key Design ldeas

e Uniformity: everything is a file
¢ open() before use: Provides opportunity for access control and arbitration

¢ Byte-oriented: Least common denominator
* OS hides underlying details:
* Block-based data transfers? Sure.

e Stream data transfers? Sure.

e Kernel buffered read() and write()
* Helpful to make everything byte-oriented
* Process is blocked while waiting for return
* Complete in background
* Writes return immediately
* Enables a “global” buffer management (eg., taking caches into account)

e Explicit close()

Interprocess Communication

e What if two processes wish to communication with one another?
* What are the possible options?

¢ One option: shared memory address space

* But the OS enforces protection...
* Possible, but can be catastrophic

e Another option: use a file
* Producer (writer) writes to a file; consumer (reader) reads.
* Better; OS even provides a way:
*file descriptors are shared between parent & child processes
*Problem?
*High overheads

e Other options: IPC and RPC

Interprocess Communication

* A crazy idea: Create an in-memory queue
e Data written by producer process is written to the queue
e Consumer processes can read from the queue

e Use a file interface to enable reads and writes

e Recall: file descriptors are shared between parent & child processes

e Donel?!

* Allowing the processes to access the queue as and when they want leads to..
 Potential protection violation (it is shared memory after all)
* What could we do?
e Suppose we ask the Kernel to help...

* Use syscalls! Allow accessing the queue via system calls

* Challenge?
* What if A generates data faster than B can consume it?

* What if B consumes data faster than A generates it?

“Pipe” for Interprocess Communication

* A crazy idea: Create an in-memory queue
e Data written by producer process is written to the queue
e Consumer processes can read from the queue
e Use a file interface to enable reads and writes
e Recall: file descriptors are shared between parent & child processes

* Enable accessing the queue via syscalls!

* Challenge?
* What if A generates data faster than B can consume it?

* What if B consumes data faster than A generates it?
* Solution: blocked reads and writes!

* This queue is called a “pipe”

* Has two file descriptors, one for executing each of read and write

“Sockets” for Remote Interprocess Communication

* What if the two processes are running on two different physical servers?
e With a network sitting in the middle?
e What could we do?

* Sockets!
* Create an in-memory queue at each process
* Exactly the same semantics as a file
* Ensure the correct “semantics” between the two queues

* Data read at the consumer has exactly the same ordering as the
data written by the producer

* The correctness is enabled by the OS

* Using a reliable, in-order, delivery protocol for data transfer over the network

