
Opera&ng	Systems	

Lecture	4:		
Abstrac.ons	I:	Threads	
Abstrac.ons	II:	Processes	

Abstrac.ons	III:	IPC

CS4410

Rachit	Agarwal

Goal	of	Today’s	Lecture

• Wrap	up	discussion	on	the	first	abstraction:	thread	

• Deeper	dive	into	the	second	abstraction:	process	

• Introduction	to	the	third	abstraction:	IPC	abstractions

Recall:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	virtual	core:	a	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other

Recall:	Threads

• Virtual	cores:	illusion	of	infinite	processors	
• Each	thread	executes	a	sequence	of	instructions,	in	order,	on	a	physical	core	

•Why	threads?		

• Statistical	multiplexing:	improved	utilization	of	physical	cores	

• Challenges:		
• synchronization	(correctness),	scheduling	(performance)

Recall:	Address	space

• Virtual	address	space:	illusion	of	infinite	memory	

•Why	virtual	address	space?	

• Statistical	multiplexing:	improved	utilization	of	physical	memory	

• Protection/Isolation	(not	yet	covered)		
• ….	

• Challenges?	
• Efficient	address	translation

Recall:	Process

• Execution	environment	with	restricted	rights:	Illusion	of	a	machine	

• One	or	more	threads	

• Execution	state:	everything	that	can	affect,	or	be	affected	by,	a	thread	
• Code,	data,	registers,	call	stack,	files,	sockets,	etc.	

• Part	of	the	process	state	is	“owned”	by	individual	threads	
• Part	is	shared	among	all	threads	in	the	process	

•Why	processes?	

• Statistical	multiplexing:	improved	utilization	of	physical	resources	

• Challenges?	
• Protection/isolation/sharing

Recall:	Protection/Isolation

• Virtualization	(address	space,	in	particular)	

• Dual	mode	operations	

• Hardware	provides	at	least	two	modes	of	operations:	

• Kernel	mode	(or	“supervisor”	/	“protected”	mode)	

• User	mode	

• Processes	execute	in	user	mode	

• “Controlled”	transitions	between	user	mode	and	kernel	mode	

• System	calls,	interrupts,	exceptions

Recall:	Need	for	Threads

• Consider	the	following	program:	

main() {
 ComputePI();
 PrintClassList(“classlist.txt”);
}

• The	program	would	never	print	out	class	list:	

• ComputePI	would	never	finish

Recall:	With	Threads

• Version	of	program	with	threads	(loose	syntax):	
main() {
 create_thread(ComputePI());
 create_thread(PrintClassList(“classlist.txt”));
}

• Now,	you	would	actually	see	the	class	list	

• But	only	“now	and	then”	

• Illusion:	infinite	number	of	processors	(potentially	varying	speeds)	

• create_thread:	Spawns	a	new	thread	running	the	given	procedure	
• Should	behave	as	if	another	CPU	is	running	the	given	procedure

Questions?

Wrapping	up	Abstraction	I:	Threads	

Multithreaded	Programs

• When	you	compile	a	C	program	and	run	the	executable	

• It	creates	a	process	that	is	executing	that	program	

• Initially,	this	new	process	has	one	thread	in	its	own	address	space	

• With	code,	globals,	etc.	as	specified	in	the	executable	

• How	can	we	make	a	multithreaded	process?	

• A	process	can	issues	syscalls	to	create	new	threads	

• These	new	threads	are	part	of	the	process:		

• They	share	its	address	space

New	Idea:	Fork-Join	Pattern

• Main	thread	creates	(forks)	collection	of	sub-threads	passing	them	args	to	work	on…	

• …	and	then	joins	with	them,	collecting	results.

create

exit

join

Memory	Layout	with	Two	Threads

• Two	sets	of	CPU	registers	

• Two	sets	of	stacks	

• Issues:	

• How	do	we	position	stacks	relative	to	each	other?	

• What	maximum	size	should	we	choose	for	the	stacks?	

• What	happens	if	threads	violate	this?	

• How	might	you	catch	violations?

Code

Global	Data

Heap

Stack	1

Stack	2

A
ddress	Space

0x000…

0xFFF…

Thread	Abstraction

• Illusion:	infinite	number	of	processors,	potentially	varying	speeds	

• Reality:	threads	execute	with	variable	“speed”	

• Why?	

• Depends	on	scheduling	policies	

• Programs	must	be	designed	to	work	with	any	schedule

Programmer	vs.	Processor	View

Correctness	with	Concurrent	Threads

• Goal:	Correctness	by	Design		
• What	makes	this	a	challenging	goal?	

• Non-determinism:	
• Scheduler	can	run	threads	in	any	(non-deterministic)	order	

• Why?	

• Scheduler	can	switch	threads	at	any	time	

• Why?	

• Independent	Threads	

• No	state	shared	with	other	threads	

• Deterministic,	reproducible	conditions	

• Cooperating	Threads	

• Shared	state	between	multiple	threads

Race	Conditions

• Initially	x	==	0	and	y	==	0 
 
 
 

• What	are	the	possible	values	of	x	below	after	all	threads	finish?	

• Must	be	1.	Thread	B	does	not	interfere	with	Thread	A.

Thread A
x = 1;

Thread B

y = 2;

Race	Conditions

• Initially	x	==	0	and	y	==	0 
 
 
 

• What	are	the	possible	values	of	x	below?		

• 1	or	3	or	5	(non-deterministic)	

• Race	Condition:	Thread	A	“races”	against	Thread	B!

Thread A
x = y + 1;

Thread B

y = 2;
y = y * 2;

Abstraction	II:	Processes	

Recall:	Process

• Definition:	execution	environment	with	restricted	rights	

• One	or	more	threads	

• Execution	state:	everything	that	can	affect,	or	be	affected	by,	a	thread	
• Code,	data,	registers,	call	stack,	files,	sockets,	etc.	

• Part	of	the	process	state	is	“owned”	by	individual	threads	
• Part	is	shared	among	all	threads	in	the	process

Process	control	block	(PCB)

• Each	process	has	a	“state”—Process	control	block	(PCB)	

• Execution	state	for	each	thread	
• Scheduling	information	

• Information	about	memory	used	by	the	process	

• Information	about	files,	sockets,	etc.	

• ….

Processes

• How	to	manage	process	state?	

• How	to	create	a	process?	
• How	to	manage	process	state?	

• How	to	exit	from	a	process?	

• Remember:	Everything	outside	of	

the	kernel	is	running	in	a	process!	

• Processes	are	created	and	
managed…	by	processes!

Processes

• Processes	are	created	and	managed	by	….	

• processes!	
• Hhhmm.	How	does	the	first	process	start?	

• By	the	kernel	
• Often	configured	as	an	argument	to	the	kernel	

• Before	the	kernel	boots	
• Often	called	the	“init”	process	

• After	this,	all	processes	are	created	by	other	processes

Process	Management

• exit — terminate	a	process	

• fork — copy	the	current	process	

• exec — change	the	program	being	run	by	the	current	process	

• wait — wait	for	a	process	to	finish	

• kill — send	a	signal	(interrupt-like	notification)	to	another	process	

• sigaction — set	handlers	for	signals

Process	Management

• exit — terminate	a	process	

• fork — copy	the	current	process	

• exec — change	the	program	being	run	by	the	current	process	

• wait — wait	for	a	process	to	finish	

• kill — send	a	signal	(interrupt-like	notification)	to	another	process	

• sigaction — set	handlers	for	signals

exit	()

• Called	after	process	terminates	

• Deallocates	memory	

• Destructs	most	OS	data	structures	

• Closes	open	files

exit()

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[])
{
 /* get current processes PID */
 pid_t pid = getpid();
 printf("My pid: %d\n", pid);

 exit(0);
}

Q:	What	if	we	let	main	return	without	ever	calling	exit?	

• The	OS	Library	calls	exit()	for	us!	
• The	entry	point	of	the	executable	is	in	the	OS	library	
• OS	library	calls	main	

• If	main	returns,	OS	library	calls	exit

Process	Management

• exit — terminate	a	process	

• fork — copy	the	current	process	

• exec — change	the	program	being	run	by	the	current	process	

• wait — wait	for	a	process	to	finish	

• kill — send	a	signal	(interrupt-like	notification)	to	another	process	

• sigaction — set	handlers	for	signals

fork	()

• Used	to	create	processes—copy	the	current	process	

• New	“child”	process	has	a	different	process	ID	(pid)	AND	a	single	thread	

• New	“child”	process	is	a	clone:	
• State	of	original	process	duplicated	in	both	parent	and	child	process	

• Returns	twice	(!),	to	both	the	parent	and	the	child	process	
• Sets	pid	to	different	values	(return	value	from	fork():	pid)	

•When	>	0	

• Running	in	original	(parent)	process	
• Return	value	is	child’s	process	pid	

•When	=	0	

• Running	in	new	child	process	
•When	<	0	

• Error	(must	handle	somehow)	

• Running	in	parent	process

fork()	example

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

Process	Management

• exit — terminate	a	process	

• fork — copy	the	current	process	

• exec — change	the	program	being	run	by	the	current	process	

• wait — wait	for	a	process	to	finish	

• kill — send	a	signal	(interrupt-like	notification)	to	another	process	

• sigaction — set	handlers	for	signals

exec	(program,	arguments)

• Used	to	run	program	in	the	current	process	with	specified	arguments	

• Load	program	into	address	space	

• Copy	arguments	into	address	space’s	memory	

• Start	execution	at	``start’’

Process	Management

• exit — terminate	a	process	

• fork — copy	the	current	process	

• exec — change	the	program	being	run	by	the	current	process	

• wait — wait	for	a	process	to	finish	

• kill — send	a	signal	(interrupt-like	notification)	to	another	process	

• sigaction — set	handlers	for	signals

wait	()

• Causes	the	parent	process	to	wait	until	the	child	process	terminates	

• Parent	gets	return	value	from	child	

• If	no	children	alive,	wait()	returns	immediately	

• Different	from	exit()	

• exit()	called	after	process	terminates

Abstraction	III:	I/O	

Everything	is	a	“File”

• A	radical	idea	

•Proposed	by	Dennis	Ritchie	and	Ken	Thompson	in	1974	

• In	their	seminal	paper	on	UNIX	called	“The	UNIX	Time-Sharing	System”	

• Core	idea:	we	should	have	identical	interfaces	for:	

•Files	on	disk	
•Networking	(sockets)	
•Devices	(terminals,	printers,	etc.)	

•Local	interprocess	communication	(pipes,	sockets)	

• Based	on	the	system	calls	open(),	read(),	write(),	and	close()

Key	Design	Ideas

• Uniformity:	everything	is	a	file	

• open()	before	use:	Provides	opportunity	for	access	control	and	arbitration	

• Byte-oriented:	Least	common	denominator	

•OS	hides	underlying	details:	
•Block-based	data	transfers?	Sure.		
•Stream	data	transfers?	Sure.	

•Kernel	buffered	read()	and	write()	
•Helpful	to	make	everything	byte-oriented	

•Process	is	blocked	while	waiting	for	return	
•Complete	in	background	

•Writes	return	immediately	

•Enables	a	“global”	buffer	management	(eg.,	taking	caches	into	account)	

• Explicit	close()

Interprocess	Communication

• What	if	two	processes	wish	to	communication	with	one	another?	

•What	are	the	possible	options?	

• One	option:	shared	memory	address	space	

•But	the	OS	enforces	protection…	
•Possible,	but	can	be	catastrophic	

• Another	option:	use	a	file	

•Producer	(writer)	writes	to	a	file;	consumer	(reader)	reads.	

•Better;	OS	even	provides	a	way:		
• file	descriptors	are	shared	between	parent	&	child	processes	

•Problem?	

•High	overheads	

• Other	options:	IPC	and	RPC

Interprocess	Communication

•A	crazy	idea:	Create	an	in-memory	queue	

• Data	written	by	producer	process	is	written	to	the	queue	

• Consumer	processes	can	read	from	the	queue	

• Use	a	file	interface	to	enable	reads	and	writes	
• Recall:	file	descriptors	are	shared	between	parent	&	child	processes	

• Done!?!	

•Allowing	the	processes	to	access	the	queue	as	and	when	they	want	leads	to..	
•Potential	protection	violation	(it	is	shared	memory	after	all)	

•What	could	we	do?	

• Suppose	we	ask	the	Kernel	to	help…	

•Use	syscalls!	Allow	accessing	the	queue	via	system	calls	

•Challenge?	
•What	if	A	generates	data	faster	than	B	can	consume	it?	

•What	if	B	consumes	data	faster	than	A	generates	it?

“Pipe”	for	Interprocess	Communication

•A	crazy	idea:	Create	an	in-memory	queue	

• Data	written	by	producer	process	is	written	to	the	queue	

• Consumer	processes	can	read	from	the	queue	

• Use	a	file	interface	to	enable	reads	and	writes	
• Recall:	file	descriptors	are	shared	between	parent	&	child	processes	

•Enable	accessing	the	queue	via	syscalls!	

•Challenge?	
•What	if	A	generates	data	faster	than	B	can	consume	it?	

•What	if	B	consumes	data	faster	than	A	generates	it?	

•Solution:	blocked	reads	and	writes!	

•This	queue	is	called	a	“pipe”	
•Has	two	file	descriptors,	one	for	executing	each	of	read	and	write

“Sockets”	for	Remote	Interprocess	Communication

•What	if	the	two	processes	are	running	on	two	different	physical	servers?	

• With	a	network	sitting	in	the	middle?	

• What	could	we	do?	

•Sockets!	
•Create	an	in-memory	queue	at	each	process	

•Exactly	the	same	semantics	as	a	file	

•Ensure	the	correct	“semantics”	between	the	two	queues	

•Data	read	at	the	consumer	has	exactly	the	same	ordering	as	the	
data	written	by	the	producer	

•The	correctness	is	enabled	by	the	OS	
•Using	a	reliable,	in-order,	delivery	protocol	for	data	transfer	over	the	network

