
Opera&ng	Systems	

Lecture	3:		
Four	fundamental	OS	concepts	

Abstrac8ons	I:	Threads

CS4410

Rachit	Agarwal



Context	for	today’s	lecture

• Last	lecture	(and	early	parts	of	today’s	lecture):	

• Study	some	of	the	building	blocks	of	an	OS	

• Understand	“why”	we	need	these	building	blocks	

• And	what	are	the	conceptual	challenges	in	designing	them	

• Today,	and	next	couple	of	lectures	

• Understand	the	abstractions	offered	by	the	OS	

• Threads,	Process,	Virtual	memory,	Files,	Sockets,	Signals,	..	

• Why	they	are	designed	the	way	they	are	designed	

• What	are	the	tradeoffs	in	different	design	decisions	

• Some	interesting	details	on	how	they	are	implemented	



Goal	of	Today’s	Lecture

• Wrap	up	discussion	on	four	fundamental	concepts	in	OS	

• Deeper	dive	into	threads



Recall:	What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware	
• CPU:	threads	

• Memory:	virtual	memory	

• Storage	devices:	files	

• Network:	sockets	

• Server:	collection	of	resources	needed	by	an	application	(processes,	VM,..)	

• Manages	hardware	resources	
• Resource	allocation,	sharing	and	isolation	

• Implements	common	services	for	applications	
• Security,	protection	and	authentication	

• Reliability		

• Communication	

• Input/output	operations	

• Program	execution	

• ….



Recall:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other



Recall:	Threads
• Definition:	A	single,	sequential	execution	context	

• A	“virtual”	core	
• Executes	a	sequence	of	instructions,	in	order,	on	a	physical	core	

• Only	one	thing	happens	at	a	time

• Challenges:		
• synchronization	(correctness),	scheduling	(performance)

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 

• Why	threads?		

• Statistical	multiplexing:	improved	utilization	of	physical	cores



Recall:	Virtual	address	space

• Physical	address	space:	where	the	data	actually	resides	

• “Virtual”	address	space:	where	the	program	thinks	the	data	resides	

• Why	virtual	address	space?	

• Statistical	multiplexing:	improved	utilization	of	physical	memory	

• Protection/Isolation	(not	yet	covered)		
• ….	

• Challenges?	
• Efficient	address	translation



Recall:	Challenge	of	efficient	address	translation

• Programs	use	virtual	addresses	

• As	a	program	runs,	virtual	addresses	translated	to	physical	addresses	

• Address	translation	must	be	extremely	light-weight	(in	the	common	case)	

• To	keep	the	overheads	low	

• Two	ideas:	
• Perform	address	translation	in	hardware	

• Maintain	a	lookup	table	(virtual	—>	physical)	

• To	achieve	efficiency:	
• Small	size	of	lookup	table	(why?)	

• Fast	algorithms	to	perform	a	lookup



Achieving	efficiency	using	“pages”

• Divide	virtual	address	spaces	into	contiguous	chunks	of	fixed	size	(say	X)	
• Call	each	chunk	a	page	(usually	X	=	4096	bytes)	

• Map	each	page	to	4KB	of	contiguous	physical	address	space	

• If	page	size	is	X,	a	virtual	address	v	is	at		
• (assuming	addresses/offsets	start	with	0)	

• page	number:	floor(v/X)		

• Offset:	v	-	X*floor(v/X)	-	1	
• E.g.,	X=4096;	v	=	4097	is	on	page	1,	offset	0	

• Pages	enable	efficiency:	
• Smaller	lookup	table	size	

• Reduced	by	a	factor	of	X	
• Compared	to	mapping	each	individual	address	

• Enable	faster	algorithms	to	perform	a	lookup	(later)



Questions?



Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other





Process

• Definition:	execution	environment	with	restricted	rights	

• One	or	more	threads	

• Execution	state:	everything	that	can	affect,	or	be	affected	by,	a	thread	
• Code,	data,	registers,	call	stack,	files,	sockets,	etc.	

• Part	of	the	process	state	is	“owned”	by	individual	threads	
• Part	is	shared	among	all	threads	in	the	process	

• Each	process	has	a	“state”—Process	control	block	(PCB)	

• Execution	state	for	each	thread	
• Scheduling	information	

• Information	about	memory	used	by	the	process	

• Information	about	files,	sockets,	etc.	

• ….





Evolution	of	OS	process	model

• Early	operating	systems:	single	tasking	

• Single	process,	single	thread	
• “switch”	applications	over	long	timescales	

• Problem?	

• Late	1970s:	multitasking	

• Multiple	processes,	single	thread	per	process	

• Share	resources	across	processes	
• Problem?	

• 1990s:	multitasking,	multithreading		

• Multiple	processes,	multiple	threads	

• Challenges?



Single	and	Multithreaded	Processes

• Why	have	multiple	threads	within	the	same	process?	

• Threads	encapsulate	concurrency



Questions?



Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other



An	OS	may	run	multiple	concurrent	processes



The	core	challenge	with	multiple	processes?

• Protection/Isolation/Sharing	
• Reliability:	buggy	processes	can	only	hurt	themselves	

• Security:	a	process	does	not	have	to	trust	other	processes	
• Fairness:	a	good	granularity	to	enforce	fair	utilization	of	resources		

• Mechanisms	to	enable	isolation:	

• Virtualization	
• Virtual	cores,	virtual	address	space	(in	particular)	

• Dual	mode	operations	

• 	Only	the	OS	can	access	certain	resources



Dual	mode	operation

• Hardware	provides	at	least	two	modes	of	operations:	

• Kernel	mode	(or	“supervisor”	/	“protected”	mode)	

• User	mode	

• Processes	(i.e.,	programs	you	run)	execute	in	user	mode	

• Certain	operations	are	prohibited	when	running	in	user	mode	

• E.g.,	changing	the	page	table	pointer	
• To	perform	privileged	actions,	processes	request	services	from	the	OS	

• Kernel	executes	in	kernel	mode	

• Performs	privileged	actions	to	support	running	processes	

• Configures	hardware	for	proper	protection	(e.g.,	address	translation)		

• “Controlled”	transitions	between	user	mode	and	kernel	mode	

• System	calls,	interrupts,	exceptions



User	to	Kernel	Mode	Transfers

• Syscalls	
• Process	requests	a	system	service,	e.g.,	exit	

• Like	a	function	call,	but	“outside”	the	process	

• Interrupts	
• External	asynchronous	event	
• e.g.,	I/O	operations	

• Trap	or	exception	
• Internal	synchronous	event	in	process	
• e.g.,	protection	violation	(segmentation	fault),	divide-by-zero,	…



Additional	layers	of	protection	for	modern	systems

• In	many	modern	large-scale	deployments	

• Run	a	complete	OS	in	a	“virtual	machine”	

• Package	all	libraries	associated	with	an	application	into	a	“container”	

• More	on	this	later	in	the	course



Questions?



Abstraction	I:	Threads	



Diving	one	more	level	deeper:	Threads

• Thread:	A	single,	sequential	execution	context	
• A	single	execution	sequence	that	can	be	scheduled	independently	

• Provide	a	mechanism	for	concurrency	and	parallelism	

• Protection	is	an	orthogonal	concept	
• A	protection	domain	can	contain	one	thread	or	more



Concurrency	vs.	Parallelism

• Concurrency	is	about	handling	multiple	things	

• Parallelism	is	about	doing	multiple	things	simultaneously	

• Example:	Two	threads	on	a	single-core	system	without	hyperthreading…	

• …	execute	concurrently	…	

• …	but	not	in	parallel	

• What	does	it	mean	to	run	two	threads	concurrently?	

• Scheduler	is	free	to	run	threads	in	any	order	and	interleaving	

• Thread	may	run	to	completion	or	time-slice	in	chunks



Need	for	Threads

• Consider	the	following	program:	

main() {
    ComputePI();
    PrintClassList(“classlist.txt”);
}

•What	output	do	you	expect?	

•Would	the	program	ever	print	out	class	list?	

• No!	Why?		

• ComputePI	would	never	finish



With	Threads

• Version	of	program	with	threads	(loose	syntax):	
main() {
    create_thread(ComputePI());
    create_thread(PrintClassList(“classlist.txt”));
}

• What	output	do	you	expect?	

• Now,	you	would	actually	see	the	class	list	

• But	only	“now	and	then”	

• Illusion:	infinite	number	of	processors	(potentially	varying	speeds)	

• create_thread:	Spawns	a	new	thread	running	the	given	procedure	
• Should	behave	as	if	another	CPU	is	running	the	given	procedure



Threads	Mask	“Idle”	periods

• A	thread	is	in	one	of	the	following	three	states:	

• RUNNING	—	running	

• READY	—	eligible	to	run,	but	not	currently	running	

• BLOCKED	—	ineligible	to	run	

• If	a	thread	cannot	proceed	(e.g.,	waiting	for	an	I/O	request	to	be	finished)	

• The	OS	marks	it	as	BLOCKED	

• Once	the	thread	is	ready,	the	OS	marks	it	as	READY	

• Can	now	be	scheduled	

• Once	the	thread	is	scheduled,	the	OS	marks	it	as	RUNNING	

• Actually	using	the	physical	core	now



Another	example	for	Threads

• Version	of	program	with	threads	(loose	syntax):	
main() {
    create_thread(RenderUserInterface);
    create_thread(PrintClassList(“classlist.txt”));
}

• What	is	the	behavior	here?	

• Still	respond	to	user	input	

• While	reading	file	in	the	background



Multithreaded	Programs

• When	you	compile	a	C	program	and	run	the	executable	

• It	creates	a	process	that	is	executing	that	program	

• Initially,	this	new	process	has	one	thread	in	its	own	address	space	

• With	code,	globals,	etc.	as	specified	in	the	executable	

• How	can	we	make	a	multithreaded	process?	

• A	process	can	issues	syscalls	to	create	new	threads	

• These	new	threads	are	part	of	the	process:		

• They	share	its	address	space



New	Idea:	Fork-Join	Pattern

• Main	thread	creates	(forks)	collection	of	sub-threads	passing	them	args	to	work	on…	

• …	and	then	joins	with	them,	collecting	results.

create

exit

join



Memory	Layout	with	Two	Threads

• Two	sets	of	CPU	registers	

• Two	sets	of	stacks	

• Issues:	

• How	do	we	position	stacks	relative	to	each	other?	

• What	maximum	size	should	we	choose	for	the	stacks?	

• What	happens	if	threads	violate	this?	

• How	might	you	catch	violations?

Code

Global	Data

Heap

Stack	1

Stack	2

A
ddress	Space

0x000…

0xFFF…



Thread	Abstraction

• Illusion:	infinite	number	of	processors,	potentially	varying	speeds	

• Reality:	threads	execute	with	variable	“speed”	

• Why?	

• Depends	on	scheduling	policies	

• Programs	must	be	designed	to	work	with	any	schedule



Programmer	vs.	Processor	View



Correctness	with	Concurrent	Threads

• Goal:	Correctness	by	Design		

• What	makes	this	a	challenging	goal?	

• Non-determinism:	

• Scheduler	can	run	threads	in	any	(non-deterministic)	order	

• Why?	

• Scheduler	can	switch	threads	at	any	time	

• Why?	

• Independent	Threads	

• No	state	shared	with	other	threads	

• Deterministic,	reproducible	conditions	

• Cooperating	Threads	

• Shared	state	between	multiple	threads



Race	Conditions

• Initially	x	==	0	and	y	==	0 
 
 
 

• What	are	the	possible	values	of	x	below	after	all	threads	finish?	

• Must	be	1.	Thread	B	does	not	interfere	with	Thread	A.

Thread A
x = 1;

Thread B

y = 2;



Race	Conditions

• Initially	x	==	0	and	y	==	0 
 
 
 

• What	are	the	possible	values	of	x	below?		

• 1	or	3	or	5	(non-deterministic)	

• Race	Condition:	Thread	A	“races”	against	Thread	B!

Thread A
x = y + 1;

Thread B

y = 2;
y = y * 2;



Definitions

• Synchronization:		
• Thread	coordination,	usually	regarding	shared	data	

• Mutual	Exclusion:		

• Ensuring	only	one	thread	does	a	particular	thing	at	a	time	

• Type	of	synchronization	

• Critical	Section:		
• Part	of	code	that	can	be	executed	by	exactly	one	thread	at	once	
• Result	of	mutual	exclusion	

• Lock:		
• An	object	that	can	be	held	by	only	one	thread	at	a	time	

• Provides	mutual	exclusion


