

Operating Systems

Lecture 2: Four fundamental OS concepts

Context for today's lecture

- One of the harder lectures
 - A lot of new "terminology"
 - Little connection on what you have seen in the past: applications
 - You may feel lost
 - It is okay
- We will discuss some of the building blocks of an OS
 - We will cover them in much more detail in upcoming lectures
 - Today: understand "why" we need these building blocks
 - And what are the conceptual challenges in designing them

Goal of Today's Lecture

- Wrap up discussion from the last lecture
 - Now I know we finish at 4 PM :-)
 - My teaching style, and caveats
- Four fundamental OS concepts
- Some announcements

Last lecture: 8 basic questions

- 1. What is an "operating system", and what does it do?
- 2. Why study operating systems?
- 3. What is CS4410 about?
- 4. What is the course workload, grading policies, etc.?
- 5. How will this course be organized?
- 6. Who am I?
- 7. How do I teach?
- 8. Is CS4410 the right class for you?

Recall: What is an operating system, and what does it do?

A **software layer** designed with three goals:

- Enable applications to conveniently access hardware
- Manage all hardware resources
- Implement common services for applications

Recall: What does an OS do?

- Enables **convenient "abstractions"** for applications to access hardware
 - CPU: threads
 - Memory: virtual memory
 - Storage devices: files
 - Network: sockets
 - Server: collection of resources needed by an application (processes, VM,..)
- Manages hardware resources
 - Resource allocation, sharing and isolation
- Implements common services for applications
 - Security, protection and authentication
 - Reliability
 - Communication
 - Input/output operations
 - Program execution

•

Recall: What is this course about?

Architectural principles, design goals and performance objectives in OS

- <u>How to think</u> about abstractions offered by OSes?
 - What abstractions should an OS offer, and why?
 - What should be the semantics (correctness conditions)?
- <u>How to think</u> about performing resource management in OSes?
 - What should applications know about other applications?
 - How to share resources? How to ensure isolation?
 - Why statistical multiplexing?
- <u>How to think</u> about the common services in OSes?
 - What constitutes a "common service"?
 - How to achieve commonality?

#6: Who am I?

Instructor — Rachit Agarwal

- Assistant Professor, starting Fall 2016
- **Previously**: UC Berkeley, UIUC
- Office: 411c, Gates Hall
- Proud of: my students
 - PhD students (Saksham, Qizhe, Midhul, Abhishek, Shubham)
 - Postdocs (Jaehyun, Mina)
 - Undergrad researchers (Grace Jia, Melissa Genaldi)
 - Graduated 5 students so far
 - 4x undergrads
 - 3x now PhD students at MIT (Alana, Akshay, Yannan)
 - 1x now PhD student at UC Berkeley (Lloyd Brown)
 - 1x MS—now PhD student at CMU

Instructor — Rachit Agarwal

- Research interests: problems that excite me
 - Publish in top conferences of several areas:
 - Operating systems (OSDI)
 - Networking (NSDI, SIGCOMM)
 - Databases (SIGMOD)
 - Theory (SODA)
 - Information Theory (ISIT)
 - Diversity reflects my learning and teaching style!
 - Competitive advantage: ignorance (and curiosity)!
- Non-research interests:
 - Food: Chocolate
 - Activity: Flying planes (still training; rarely get time)
 - Skill: Mixing cocktails
 - Sleep: 2-3 hours (so, expect Ed Discussions answers at random hours)

#8: Is 4410 the right course for you?

Ask yourself...

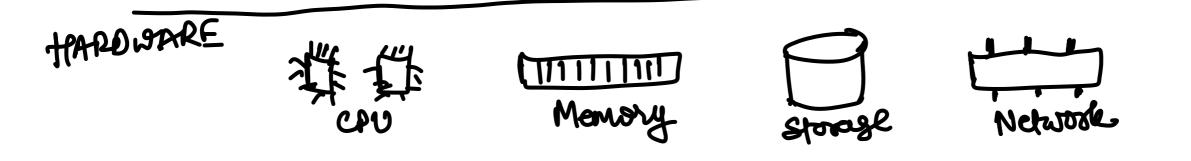
- Agree with the contract?
 - No violation to the agreement

Want to understand the "concepts" and the "why" of OS

- 4411: Implementation details
- 4414: optimizations and building high-performance application

Questions?

Diving one level deeper


Today: Four Fundamental OS Concepts

• Thread: Execution Context

- A single, sequential execution context
- Address space (with translation)
 - Program's view of memory is distinct from physical memory
- Process: an instance of a running program
 - Address Space + One or more Threads + ...

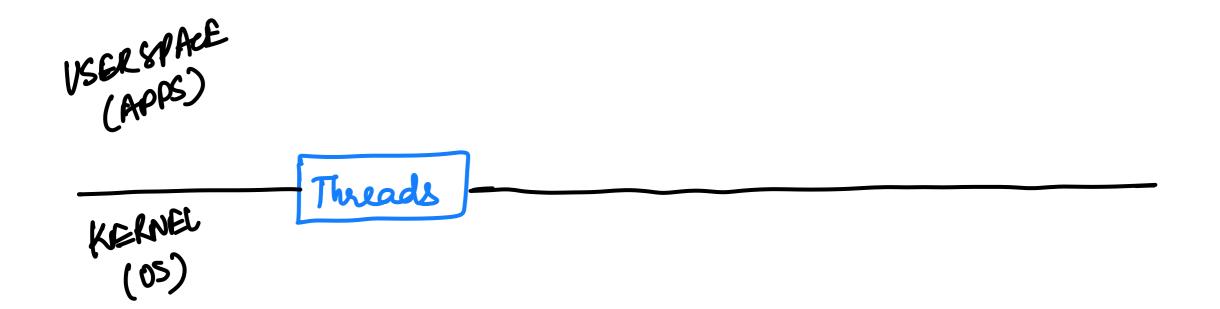
Protection/Isolation

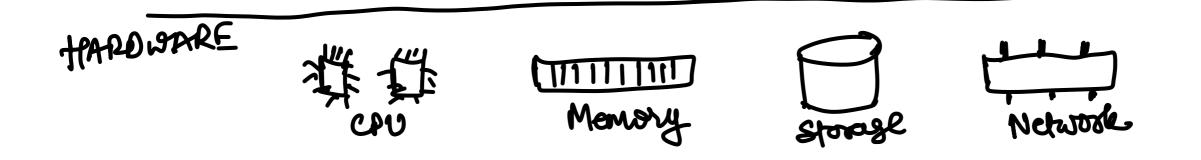
- Only the "system" can access certain resources
- Combined with translation, isolates programs from each other

KERNEL (05)

USERSPACE (APPS)

•


Today: Four Fundamental OS Concepts


• Thread: Execution Context

- A single, sequential execution context
- Address space (with translation)
 - Program's view of memory is distinct from physical memory
- Process: an instance of a running program
 - Address Space + One or more Threads + ...

Protection/Isolation

- Only the "system" can access certain resources
- Combined with translation, isolates programs from each other

Thread

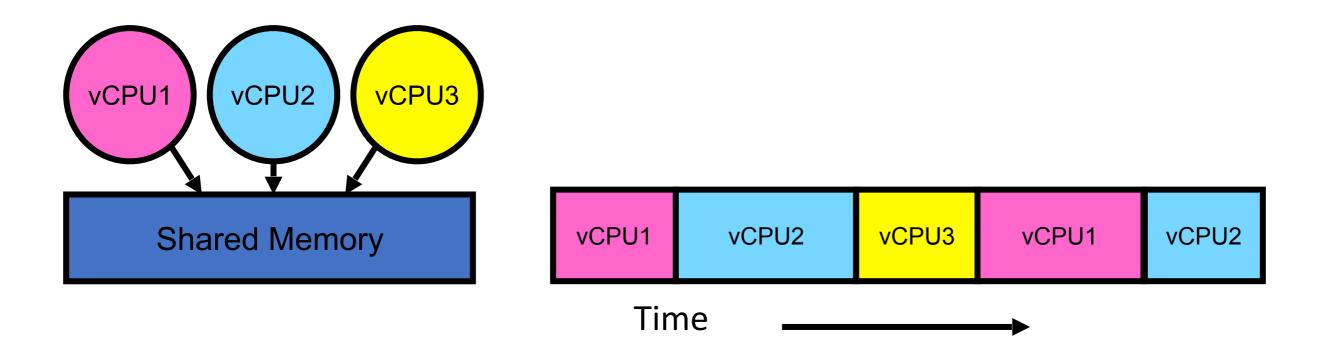
• Definition: A single, sequential execution context

- Executes a series of instructions in order
- Only one thing happens at a time
- Executes on a processor (core) when resident in that processor's registers
- Each thread has some "state"
 - Program counter (PC): progress of thread's instruction sequence execution
 - Thread stack: reserved region of memory
 - Stack pointer (SP): location of last item put onto the stack
 - (details in next lecture)
- Where is thread state stored?
 - Registers of the processor where thread is running (PC, SP, ..)
 - The rest is "in memory" (*Thread Control Block*)
 - What if there is not enough memory?

Thread

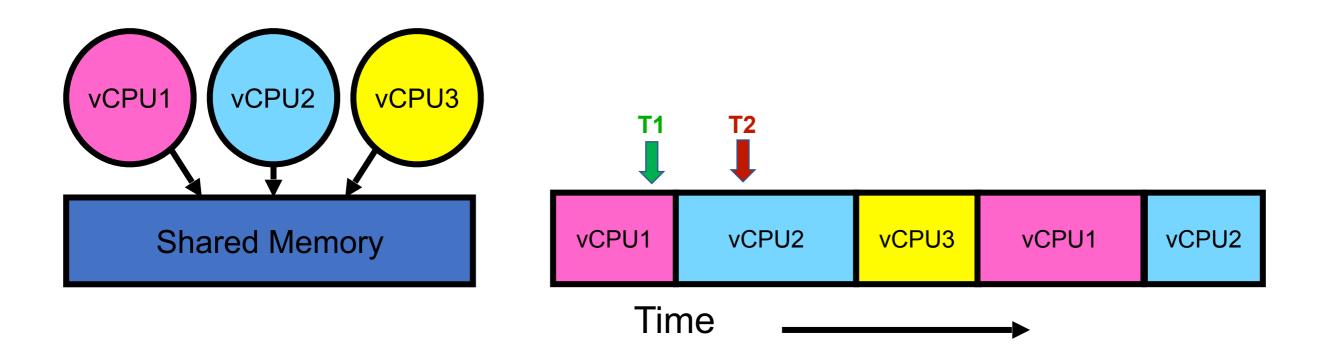
What is the difference between a thread and a core?

• Thread: "virtual" core


• Why do we need virtual cores?

- In early years: single application, single thread
 - Multiplex over long timescales
 - Problem?
 - Resource underutilization (why? when?)
- Statistical multiplexing: multiple applications, multiple threads
 - When one thread is idle, run another thread
- As an aside, many modern processors support hyperthreading:
 - Each physical core behaves as if it is actually two cores
 - Can run two threads simultaneously
 - E.g., execute one thread while the other is waiting on a cache miss

Challenges in designing virtual cores?


- Scheduling
 - Sharing physical resources across virtual cores
- Synchronization
 - Correctness despite multiple virtual cores

Threads give an illusion of multiple processors

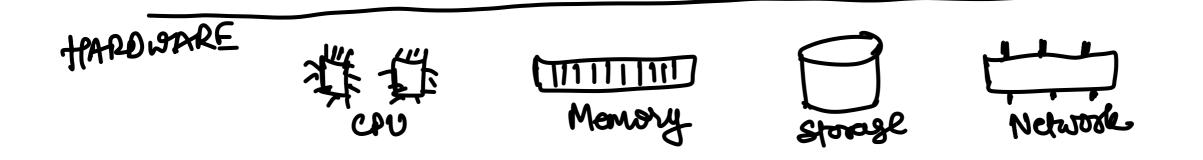
- Each thread has its own state
 - Program counter (PC)
 - Stack pointer (SP)
 - Thread control block (TCB)
 - Everything not in registers

Threads give an illusion of multiple processors

- At T1: vCPU1 on real core, vCPU2 in memory
- At T2: vCPU2 on real core, vCPU1 in memory
- What does the OS do at the end of T1?
 - Saved PC, SP, ... in vCPU1's thread control block (memory)
 - Loaded PC, SP, ... from vCPU2's thread control block
 - Jumped to PC

Questions?


Today: Four Fundamental OS Concepts


• Thread: Execution Context

- A single, sequential execution context
- Address space (with translation)
 - Program's view of memory is distinct from physical memory
- Process: an instance of a running program
 - Address Space + One or more Threads + ...

Protection/Isolation

- Only the "system" can access certain resources
- Combined with translation, isolates programs from each other

Key OS Concept: Address Space

- Physical address space: where the data *actually* resides
- "Virtual" address space: where the program thinks the data resides
- Definition: Set of accessible addresses and the state associated with them
 - 2³² = ~4 Gigabytes on a 32-bit machine
 - 2⁶⁴ = ~18 Exabytes on a 64-bit machine

Virtual address space

- Why do we need a virtual address space?
 - In early years: single application over long timescales
 - Now: multiple applications at the same time
 - How do we share memory across applications?
- One possible approach: static partitioning of the physical address space
 - Any physical address can be used only by one application
 - Problem?
 - Memory underutilization (why? when?)
- Statistical multiplexing: fine-grained sharing of physical address space
 - Give each application an illusion of infinitely large memory

Challenges in designing Virtual address space

Granularity

- Individual addresses?
- Memory regions?
-?

• Efficient translation from virtual to physical?

• Why *efficient*?

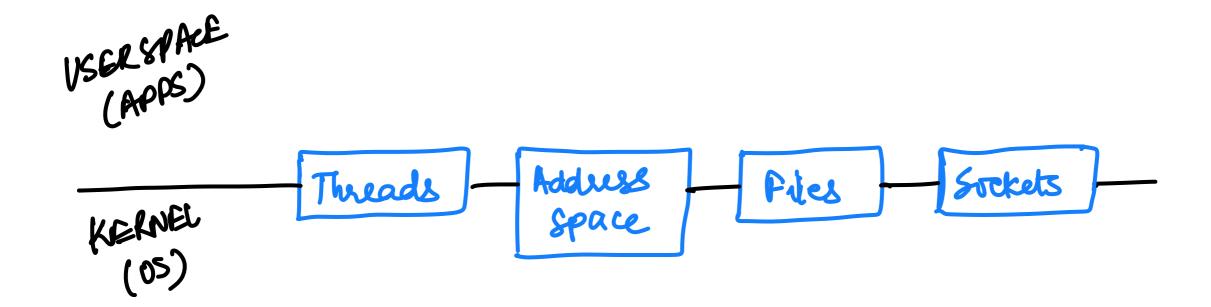
Virtual Address Space at the "page" granularity

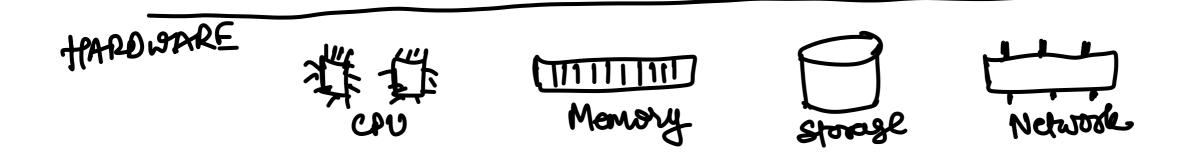
- Sharing at the granularity of "pages"
- Treat memory as page size frames and put any page into any frame
- Map each page in virtual address space to any (page-sized) memory frame
 - What if virtual address space is larger than physical memory?
 - Interesting design questions; return later
- Whenever one needs to access a virtual address
 - Find the page (and offset) that contains that virtual address
 - Translate to page's physical address
 - Done by the hardware: using a look up table (page table)
- Where is the "efficient" part?

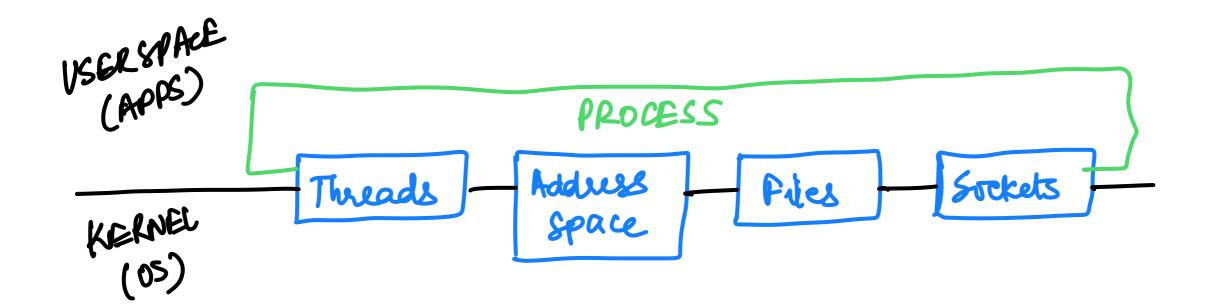
Questions?

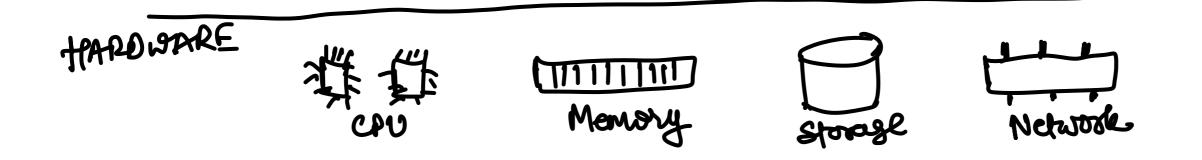
Today: Four Fundamental OS Concepts

• Thread: Execution Context


- A single, sequential execution context
- Address space (with translation)
 - Program's view of memory is distinct from physical memory


• Process: an instance of a running program


• Address Space + One or more Threads + ...

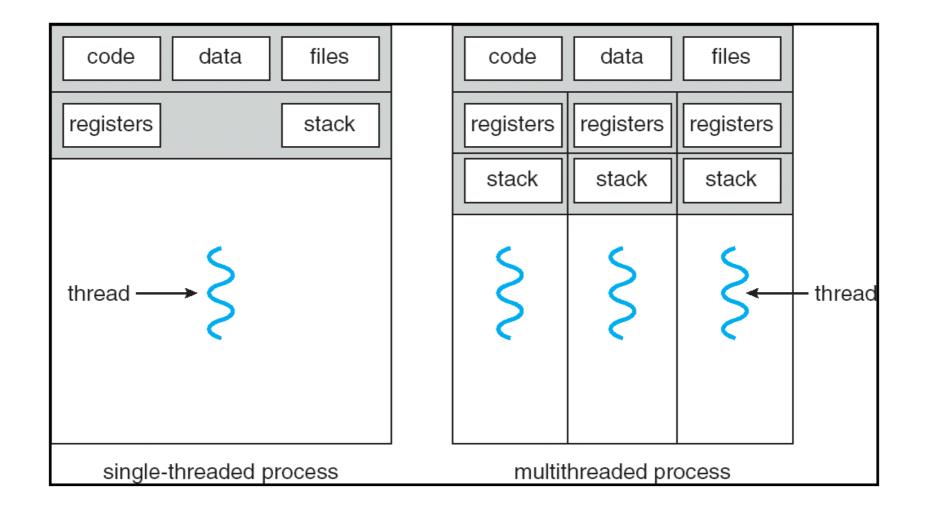

Protection/Isolation

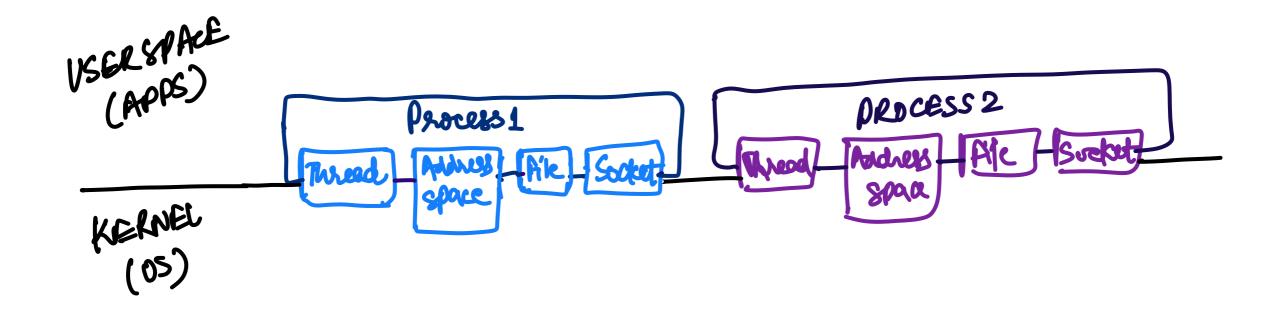
- Only the "system" can access certain resources
- Combined with translation, isolates programs from each other

Process

• Definition: execution environment with restricted rights

- One or more threads
- Execution state: everything that can affect, or be affected by, a thread
 - Code, data, registers, call stack, files, sockets, etc.
- Part of the process state is "owned" by individual threads
- Part is shared among all threads in the process
- Each process has a "state"—Process control block (PCB)
 - Execution state for each thread
 - Scheduling information
 - Information about memory used by the process
 - Information about files, sockets, etc.


•


Evolution of OS process model

- Early operating systems: single tasking
 - Single process, single thread
 - "switch" applications over long timescales
 - Problem?
- Late 1970s: multitasking
 - Multiple processes, single thread per process
 - Share resources across processes
 - Problem?
- 1990s: multitasking, multithreading
 - Multiple processes, multiple threads
 - Challenges?

Single and Multithreaded Processes

- Why have multiple threads within the same process?
- Threads encapsulate concurrency

The core challenge with multiple processes?

- Protection/Isolation/Sharing
 - Reliability: buggy processes can only hurt themselves
 - Security: a process does not have to trust other processes
 - Fairness: a good granularity to enforce fair utilization of resources

Questions?

Today: Four Fundamental OS Concepts

• Thread: Execution Context

- A single, sequential execution context
- Address space (with translation)
 - Program's view of memory is distinct from physical memory

• Process: an instance of a running program

• Address Space + One or more Threads + ...

Protection/Isolation

- Only the "system" can access certain resources
- Combined with translation, isolates programs from each other

The core challenge with multiple processes?

- Protection/Isolation/Sharing
 - Reliability: buggy processes can only hurt themselves
 - Security: a process does not have to trust other processes
 - Fairness: a good granularity to enforce fair utilization of resources
- Mechanisms to enable isolation:
 - Virtualization
 - Virtual cores, virtual address space (in particular)
 - Dual mode operations
 - Only the OS can access certain resources