
Opera&ng	Systems	

Lecture	2:	Four	fundamental	OS	concepts

CS4410

Rachit	Agarwal



Context	for	today’s	lecture

• One	of	the	harder	lectures	

• A	lot	of	new	“terminology”	

• Little	connection	on	what	you	have	seen	in	the	past:	applications	

• You	may	feel	lost	

• It	is	okay	….	

• We	will	discuss	some	of	the	building	blocks	of	an	OS	

• We	will	cover	them	in	much	more	detail	in	upcoming	lectures	

• Today:	understand	“why”	we	need	these	building	blocks	

• And	what	are	the	conceptual	challenges	in	designing	them



Goal	of	Today’s	Lecture

• Wrap	up	discussion	from	the	last	lecture	

• Now	I	know	we	finish	at	4	PM	:-)	

• My	teaching	style,	and	caveats	

• Four	fundamental	OS	concepts	

• Some	announcements



Last	lecture:	8	basic	questions

1. What	is	an	“operating	system”,	and	what	does	it	do?	

2. Why	study	operating	systems?		

3. What	is	CS4410	about?	

4. What	is	the	course	workload,	grading	policies,	etc.?	

5. 	How	will	this	course	be	organized?		

6. Who	am	I?	

7. How	do	I	teach?	

8. 	Is	CS4410	the	right	class	for	you?



A	software	layer	designed	with	three	goals:		

• Enable	applications	to	conveniently	access	hardware	

• Manage	all	hardware	resources	

• Implement	common	services	for	applications

Recall:	What	is	an	operating	system,	and	what	does	it	do?



Recall:	What	does	an	OS	do?

• Enables	convenient	“abstractions”	for	applications	to	access	hardware	
• CPU:	threads	

• Memory:	virtual	memory	

• Storage	devices:	files	

• Network:	sockets	

• Server:	collection	of	resources	needed	by	an	application	(processes,	VM,..)	

• Manages	hardware	resources	
• Resource	allocation,	sharing	and	isolation	

• Implements	common	services	for	applications	
• Security,	protection	and	authentication	

• Reliability		

• Communication	

• Input/output	operations	

• Program	execution	

• ….



Architectural	principles,	design	goals	and	performance	objectives	in	OS	

• How	to	think	about	abstractions	offered	by	OSes?	

• What	abstractions	should	an	OS	offer,	and	why?	

• What	should	be	the	semantics	(correctness	conditions)?	

• How	to	think	about	performing	resource	management	in	OSes?	

• What	should	applications	know	about	other	applications?	

• How	to	share	resources?	How	to	ensure	isolation?	

• Why	statistical	multiplexing?	

• How	to	think	about	the	common	services	in	OSes?	

• What	constitutes	a	“common	service”?	

• How	to	achieve	commonality?

Recall:	What	is	this	course	about?



#6:	Who	am	I?



• Assistant	Professor,	starting	Fall	2016	

• Previously:	UC	Berkeley,	UIUC	

• Office:	411c,	Gates	Hall	

• Proud	of:	my	students	

• PhD	students	(Saksham,	Qizhe,	Midhul,	Abhishek,	Shubham)	

• Postdocs	(Jaehyun,	Mina)	

• Undergrad	researchers	(Grace	Jia,	Melissa	Genaldi)	

• Graduated	5	students	so	far	

• 4x	undergrads		

• 3x	now	PhD	students	at	MIT	(Alana,	Akshay,	Yannan)	

• 1x	now	PhD	student	at	UC	Berkeley	(Lloyd	Brown)	

• 1x	MS—now	PhD	student	at	CMU

Instructor	—	Rachit	Agarwal



• Research	interests:	problems	that	excite	me		

• Publish	in	top	conferences	of	several	areas:		
• Operating	systems	(OSDI)		
• Networking	(NSDI,	SIGCOMM)	
• Databases	(SIGMOD)	
• Theory	(SODA)	
• Information	Theory	(ISIT)	

• Diversity	reflects	my	learning	and	teaching	style!	

• Competitive	advantage:	ignorance	(and	curiosity)!	

• Non-research	interests:		
• Food:	Chocolate	
• Activity:	Flying	planes	(still	training;	rarely	get	time)	

• Skill:	Mixing	cocktails	

• Sleep:	2-3	hours	(so,	expect	Ed	Discussions	answers	at	random	hours)

Instructor	—	Rachit	Agarwal



#8:	Is	4410	the	right	course	for	you?



• Agree	with	the	contract?	
• No	violation	to	the	agreement	

• Want	to	understand	the	“concepts”	and	the	“why”	of	OS	

• 4411:	Implementation	details	

• 4414:	optimizations	and	building	high-performance	application

Ask	yourself…



Questions?



Diving	one	level	deeper	



Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other





Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other





Thread
• Definition:	A	single,	sequential	execution	context	

• Executes	a	series	of	instructions	in	order	
• Only	one	thing	happens	at	a	time	

• Executes	on	a	processor	(core)	when	resident	in	that	processor's	registers	

• Each	thread	has	some	“state”	
• Program	counter	(PC):	progress	of	thread’s	instruction	sequence	execution	

• Thread	stack:	reserved	region	of	memory	

• Stack	pointer	(SP):	location	of	last	item	put	onto	the	stack	

• ….	(details	in	next	lecture)	

• Where	is	thread	state	stored?	

• Registers	of	the	processor	where	thread	is	running	(PC,	SP,	..)	
• The	rest	is	"in	memory”	(Thread	Control	Block)	

• What	if	there	is	not	enough	memory?



Thread

• What	is	the	difference	between	a	thread	and	a	core?	

• Thread:	“virtual”	core		

• Why	do	we	need	virtual	cores?	
• In	early	years:	single	application,	single	thread		

• Multiplex	over	long	timescales	

• Problem?		

• Resource	underutilization	(why?	when?)	
• Statistical	multiplexing:	multiple	applications,	multiple	threads	

• When	one	thread	is	idle,	run	another	thread	

• As	an	aside,	many	modern	processors	support	hyperthreading:	

• Each	physical	core	behaves	as	if	it	is	actually	two	cores	
• Can	run	two	threads	simultaneously	

• E.g.,	execute	one	thread	while	the	other	is	waiting	on	a	cache	miss



Challenges	in	designing	virtual	cores?

• Scheduling	
• Sharing	physical	resources	across	virtual	cores		

• Synchronization	
• Correctness	despite	multiple	virtual	cores



Threads	give	an	illusion	of	multiple	processors

• Each	thread	has	its	own	state	
• Program	counter	(PC)	

• Stack	pointer	(SP)	
• Thread	control	block	(TCB)	

• Everything	not	in	registers

vCPU3vCPU2vCPU1

Shared Memory vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 



Threads	give	an	illusion	of	multiple	processors

• At	T1:	vCPU1	on	real	core,	vCPU2	in	memory	

• At	T2:	vCPU2	on	real	core,	vCPU1	in	memory	

• What	does	the	OS	do	at	the	end	of	T1?	

• Saved	PC,	SP,	…	in	vCPU1's	thread	control	block	(memory)	

• Loaded	PC,	SP,	…	from	vCPU2's	thread	control	block	

• Jumped	to	PC

T1 T2
vCPU3vCPU2vCPU1

Shared Memory vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 



Questions?



Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other





Key	OS	Concept:	Address	Space

• Physical	address	space:	where	the	data	actually	resides	

• “Virtual”	address	space:	where	the	program	thinks	the	data	resides	

• Definition:	Set	of	accessible	addresses	and	the	state	associated	with	them	

• 232	=	~4	Gigabytes	on	a	32-bit	machine	

• 264	=	~18	Exabytes	on	a	64-bit	machine



Virtual	address	space

• Why	do	we	need	a	virtual	address	space?	
• In	early	years:	single	application	over	long	timescales	

• Now:	multiple	applications	at	the	same	time	

• How	do	we	share	memory	across	applications?	

• One	possible	approach:	static	partitioning	of	the	physical	address	space	
• Any	physical	address	can	be	used	only	by	one	application	

• Problem?	

• Memory	underutilization	(why?	when?)	

• Statistical	multiplexing:	fine-grained	sharing	of	physical	address	space	

• Give	each	application	an	illusion	of	infinitely	large	memory



Challenges	in	designing	Virtual	address	space

• Granularity	
• Individual	addresses?		
• Memory	regions?	

• ….?	

• Efficient	translation	from	virtual	to	physical?	

• Why	efficient?



Virtual	Address	Space	at	the	“page”	granularity

• Sharing	at	the	granularity	of	“pages”	

• Treat	memory	as	page	size	frames	and	put	any	page	into	any	frame	

• Map	each	page	in	virtual	address	space	to	any	(page-sized)	memory	frame	

• What	if	virtual	address	space	is	larger	than	physical	memory?	

• Interesting	design	questions;	return	later	

• Whenever	one	needs	to	access	a	virtual	address	

• Find	the	page	(and	offset)	that	contains	that	virtual	address	
• Translate	to	page’s	physical	address		
• Done	by	the	hardware:	using	a	look	up	table	(page	table)	

• Where	is	the	“efficient”	part?



Questions?



Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other







Process

• Definition:	execution	environment	with	restricted	rights	

• One	or	more	threads	

• Execution	state:	everything	that	can	affect,	or	be	affected	by,	a	thread	
• Code,	data,	registers,	call	stack,	files,	sockets,	etc.	

• Part	of	the	process	state	is	“owned”	by	individual	threads	
• Part	is	shared	among	all	threads	in	the	process	

• Each	process	has	a	“state”—Process	control	block	(PCB)	

• Execution	state	for	each	thread	
• Scheduling	information	

• Information	about	memory	used	by	the	process	

• Information	about	files,	sockets,	etc.	

• ….



Evolution	of	OS	process	model

• Early	operating	systems:	single	tasking	

• Single	process,	single	thread	
• “switch”	applications	over	long	timescales	

• Problem?	

• Late	1970s:	multitasking	

• Multiple	processes,	single	thread	per	process	

• Share	resources	across	processes	
• Problem?	

• 1990s:	multitasking,	multithreading		

• Multiple	processes,	multiple	threads	

• Challenges?



Single	and	Multithreaded	Processes

• Why	have	multiple	threads	within	the	same	process?	

• Threads	encapsulate	concurrency





The	core	challenge	with	multiple	processes?

• Protection/Isolation/Sharing	
• Reliability:	buggy	processes	can	only	hurt	themselves	

• Security:	a	process	does	not	have	to	trust	other	processes	
• Fairness:	a	good	granularity	to	enforce	fair	utilization	of	resources	



Questions?



Today:	Four	Fundamental	OS	Concepts

• Thread:	Execution	Context	
• A	single,	sequential	execution	context	

• Address	space	(with	translation)	
• Program's	view	of	memory	is	distinct	from	physical	memory	

• Process:	an	instance	of	a	running	program	

• Address	Space	+	One	or	more	Threads	+	…	

• Protection/Isolation	
• Only	the	“system”	can	access	certain	resources	

• Combined	with	translation,	isolates	programs	from	each	other



The	core	challenge	with	multiple	processes?

• Protection/Isolation/Sharing	
• Reliability:	buggy	processes	can	only	hurt	themselves	

• Security:	a	process	does	not	have	to	trust	other	processes	
• Fairness:	a	good	granularity	to	enforce	fair	utilization	of	resources		

• Mechanisms	to	enable	isolation:	

• Virtualization	
• Virtual	cores,	virtual	address	space	(in	particular)	

• Dual	mode	operations	

• 	Only	the	OS	can	access	certain	resources




