
File Systems
(Chapters 39-43,45)

CS 4410
Operating Systems

[R. Agarwal, L. Alvisi, A. Bracy, M. George, F.B. Schneider, E. Sirer, R. Van Renesse]

• Disks
• RAID-0, 1, 4, 5
• Solid State Drives (Flash memory)

Characteristics: RAM but …
• Access latency
• seek, rotational delay
• Read / write xfer speeds

Storage Devices: Recap

2

Goals
• scale
• persistence
• access by multiple processes

File System
Interface provides operations involving:
• Files
• Directories (a special kind of file)

Storage Device Use: File System

3

A file is a named assembly of data.
• Each file comprises:
• data – information a user or application stores

• array of untyped bytes
• implemented by an array of fixed-size blocks

• metadata – information added / managed by OS
• size, owner, security info, modification time, etc.

The File Abstraction

4

Files have names:
• a unique low-level name
- low-level name is distinct from location where file stored
☞ File system provides mapping from low-level names to storage

locations.
• one or more human-readable names

☞ File system provides mapping from human-readable names to
low-level names.

File Names

5

Naming conventions
• Some aspects of names are OS dependent:

Windows is not case sensitive, UNIX is.
• Some aspects are not:

Names up to 255 characters long

File name extensions are widespread:
• Windows:

- attaches meaning to extensions (.txt, .doc, .xls, …)
- associates applications to extensions

• UNIX:
- extensions not enforced by OS
- Some apps might insist upon them (.c, .h, .o, .s, for C compiler)

File Names (con’t)

6

Directory: A file whose interpretation is a
mapping from a character string to a low level
name.

Directories

7

directory index
structure

Storage
Block

low-level
name
871

music 320
work 219
foo.txt 871

File
Name:

foo.txt

Each path from root
is a name for a leaf.
/foo/bar.txt
/bar/bar
/bar/foo/bar.txt

Directories Compose into Trees

8

2 INTERLUDE: FILES AND DIRECTORIES

/

foo

bar.txt

bar

foobar

bar.txt

Figure 39.1: An Example Directory Tree

this name (as we will see). For historical reasons, the low-level name of a
file is often referred to as its inode number. We’ll be learning a lot more
about inodes in future chapters; for now, just assume that each file has an
inode number associated with it.

In most systems, the OS does not know much about the structure of
the file (e.g., whether it is a picture, or a text file, or C code); rather, the
responsibility of the file system is simply to store such data persistently
on disk and make sure that when you request the data again, you get
what you put there in the first place. Doing so is not as simple as it seems!

The second abstraction is that of a directory. A directory, like a file,
also has a low-level name (i.e., an inode number), but its contents are
quite specific: it contains a list of (user-readable name, low-level name)
pairs. For example, let’s say there is a file with the low-level name “10”,
and it is referred to by the user-readable name of “foo”. The directory
that “foo” resides in thus would have an entry (“foo”, “10”) that maps
the user-readable name to the low-level name. Each entry in a directory
refers to either files or other directories. By placing directories within
other directories, users are able to build an arbitrary directory tree (or
directory hierarchy), under which all files and directories are stored.

The directory hierarchy starts at a root directory (in UNIX-based sys-
tems, the root directory is simply referred to as /) and uses some kind
of separator to name subsequent sub-directories until the desired file or
directory is named. For example, if a user created a directory foo in the
root directory /, and then created a file bar.txt in the directory foo,
we could refer to the file by its absolute pathname, which in this case
would be /foo/bar.txt. See Figure 39.1 for a more complex directory
tree; valid directories in the example are /, /foo, /bar, /bar/bar,
/bar/foo and valid files are /foo/bar.txt and /bar/foo/bar.txt.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

Absolute: path of file from the root directory
/home/ada/projects/babbage.txt

Relative: path from the current working directory
projects/babbage.txt

(N.b. Current working dir stored in process PCB)

2 special entries in each UNIX directory:
“.” this dir
“..” for parent of this dir (except .. for “/” (root) is “/”)

To access a file:
• Go to the dir where file resides —OR—
• Specify the path where the file is

Paths as Names

9

Paths as Names (con’t)

10

music 320
work 219
foo.txt 871

File 830
 ˝/home/tom˝

mike 682
ada 818
tom 830

File 158
 ˝/home˝

File 871
 ˝/home/tom/foo.txt˝

bin 737
usr 924
home 158

File 2
 ˝/˝

The quick
brown fox
jumped
over the
lazy dog.

just files
OS uses path name to identify a file
Example: /home/tom/foo.txt

2 options:
• directory stores attributes
• file attributes stored elsewhere

• Create a file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file
• Truncate a file

File System Operations

11

Performance: Overcome limitations of disks
• leverage spatial locality to avoid seeks and to transfer block

sequences.

Flexibility: Handle diverse application workloads

Persistence: Storage for long term.

Reliability: Resilient to OS crashes and HW failure

File System Design Challenges

12

Mappings:
• Directories: file name ➜ low-level name
• Index structures: low-level name➜ block
• Free space maps: locate free blocks (near each

other)

To exploit locality of file references:
• Group directories together on disk
• Prefer (large) sequential writes/reads
• Defragmentation: Relocation of blocks:
• Blocks for a file appear on disk in sequence
• Files for directories appear near each other

Implementation Basics: Mappings

13

File size is bimodal:
• Most files are small (2K is most common size).
- to support small files: use small block size or pack multiple

file blocks (.5K) within a single disk block (4K).

• Some files are very large.
- to support large files: prefer trees to lists

Files systems are roughly ½ full.
- …even as disks get larger.

Directories are typically small (20 or fewer entries).
Average file size is growing (200K in 2007).

Agrawal, Bolosky, Douceur, Lorch. A Five Year Study of File-System Metadata. FAST’07,
San Jose CA.

Workload Overview (circa 2002-7)

14

Disk Layout
File System is stored on disks
• sector 0 of disk called Master Boot Record (MBR)
• end of MBR: partition table (partitions’ start & end addrs)
• Remainder of disk divided into partitions.
• Each partition starts with a boot block
• Boot block loaded by MBR and executed on boot
• Remainder of partition stores file system.

entire disk
PARTITION #4PARTITION #2PARTITION #1 PARTITION #3

PARTITION
TABLE

MBR

Root DirFree Space MgmtBOOT BLOCK I-NodesSUPERBLOCK Files & Directories

• Contiguous allocation
All bytes together, in order

• Linked-list
Each block points to the next block

• Indexed structure
Index block points to many other blocks

• Log structure
Sequence of segments, each containing updated blocks

Which is best? It depends…
• For sequential access? For random access?
• Large files? Small files? Mixed?

File Storage Layout Options

16

All bytes of file are stored together, in order.
+ Simple: state required per file: start block & size
+ Efficient: entire file can be read with one seek
– Fragmentation: external fragmentation is bigger problem
– Usability: user needs to know size of file at time of creation

Used in CD-ROMs, DVDs

Contiguous Allocation

17

file1 file2 file3 file4 file5

Each file is stored as linked list of blocks
• First word of each block points to next block
• Rest of disk block is file data

+ Space Utilization: no space lost to external fragmentation
+ Simple: only need to store 1st block of each file
– Performance: random access is slow
– Space Utilization: overhead of pointers

Linked-List File Storage

18

File
block

0

next

File
block

1

next

File
block

2

next

File
block

3

next

File
block

4

next

File A

Physical
Block 7 8 33 17 4

File Allocation Table (FAT)
• Used in MS-DOS, precursor of Windows
• Still used (e.g., CD-ROMs, thumb drives, camera cards)
• FAT-32, supports 228 blocks and files of 232-1 bytes

FAT (is stored on disk):
• Linear map of all blocks on disk
• Each file is a linked list of blocks

Linked List File System

19

FAT File System

20

file system blocksFAT table

data

next

data

next

data

next

implements

1 2 N

N1 2

Data BlocksFAT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

File 9 Block 3

File 9

File 12

File 12 Block 1
File 9 Block 4

File 9 Block 0
File 9 Block 1
File 9 Block 2
File 12 Block 0

FAT File System

21

• 1 entry per block
• EOF for last block
• 0 indicates free block
• directory entry maps
name to FAT index

Directory
bart.txt 9
maggie.txt 12

0

0

0

EOF
EOF

0
0
0

0
0
0

0

0

0
0

0

Folder: a file with 32-byte entries
Each Entry:
• 8 byte name + 3 byte extension (ASCII)
• creation date and time
• last modification date and time
• first block in the file (index into FAT)
• size of the file
• Long and Unicode file names take up

multiple entries

FAT Directory Structure

22

music 320
work 219
foo.txt 871

+ Simple: state required per file: start block only
+ Widely supported
+ No external fragmentation
+ block used only for data

How is FAT Good?

23

How is FAT Bad?

24

• Poor locality
• Many file seeks unless entire FAT in memory:

Example: 1TB (240 bytes) disk, 4KB (212) block
size, FAT has 256 million (228) entries (!)
4 bytes per entry ➜ 1GB (230) of main
memory required for FS (a sizeable overhead)

• Poor random access
• Limited metadata
• Limited access control
• Limitations on volume and file size

