Spatial Data Management

|R&G]| Chapter 28

C5432

Types of Spatial Data

<+ Point Data

= Points in a multidimensional space

= E.g., Raster data such as satellite imagery, where each
pixel stores a measured value

= E.g., Feature vectors extracted from text
% Region Data
= Objects have spatial extent with location and
boundary

= DB typically uses geometric approximations
constructed using line segments, polygons, etc.,
called vector data.

C5432

C5432

Types of Spatial Queries

% Spatial Range Queries
= Find all cities within 50 miles of Ithaca
= Query has associated region (location, boundary)
= Answer includes ovelapping or contained data regions

% Nearest-Neighbor Queries
= Find the 10 cities nearest to Ithaca
= Results must be ordered by proximity
+ Spatial Join Queries
= Find all cities near a lake
= Expensive, join condition involves regions and proximity

Applications of Spatial Data

% Geographic Information Systems (GIS)
= E.g., ESRI's ArcInfo; OpenGIS Consortium
= Geospatial information
= All classes of spatial queries and data are common

% Computer-Aided Design/Manufacturing
= Store spatial objects such as surface of airplane fuselage
= Range queries and spatial join queries are common
< Multimedia Databases
= Images, video, text, etc. stored and retrieved by content
= First converted to feature vector form; high dimensionality
= Nearest-neighbor queries are the most common

C5432

Single-Dimensional Indexes

% B+ trees are fundamentally single-dimensional
indexes.

% When we create a composite search key B+ tree,
e.g., an index on <age, sal>, we effectively linearize
the 2-dimensional space since we sort entries first
by age and then by sal. ol ¢

¥
70 . |
Consider entries: 28 ’ y \
<11, 80>, <12, 10> 0] C b e
<12, 20>, <13, 75> 30 o

CS432 11 12 13

Multidimensional Indexes

% A multidimensional index clusters entries so as to
exploit “nearness” in multidimensional space.

% Keeping track of entries and maintaining a
balanced index structure presents a challenge!

1
""""""""

sof 2 ey

70

S - o | | || Spatial
onsider entries: 50 v 1 v 1 clusters
<11, 80>, <12, 10> ol & Fd
<12, 20>, <13, 75> 0| o 7&
20 N B+ tree
10 bbbl el order

C5432

Motivation for Multidimensional
Indexes
+ Spatial queries (GIS, CAD).

= Find all hotels within a radius of 5 miles from the
conference venue.

= Find the city with population 500,000 or more that is
nearest to Kalamazoo, MI.

= Find all cities that lie on the Nile in Egypt.
= Find all parts that touch the fuselage (in a plane design).

% Similarity queries (content-based retrieval).

= Given a face, find the five most similar faces.

% Multidimensional range queries.
= 50 <age <55 AND 80K <sal < 90K

C5432

What's the difficulty?

% An index based on spatial location needed.

* One-dimensional indexes don’t support
multidimensional searching efficiently. (Why?)

= Hash indexes only support point queries; want to
support range queries as well.

= Must support inserts and deletes gracetully.

+ Ideally, want to support non-point data as
well (e.g., lines, shapes).

% The R-tree meets these requirements, and
variants are widely used today.

C5432

C5432

The R-Tree

< The R-tree is a tree-structured index that
remains balanced on inserts and deletes.

% Each key stored in a leaf entry is intuitively a
box, or collection of intervals, with one
interval per dimension. Root of

% Example in 2-D:

R-Tree Properties

% Leaf entry = < n-dimensional box, rid >
= This is Alternative (2), with key value being a box.
= Box is the tightest bounding box for a data object.

% Non-leaf entry = < n-dim box, ptr to child node >

= Box covers all boxes in child node (in fact, subtree).
+ All leaves at same distance from root.
% Nodes can be kept 50% full (except root).

= Can choose a parameter m that is <= 50%, and ensure
that every node is at least m % full.

C5432 10

o

Example of an R-Tree
Leaf entry

Index entry

Spatial object
approximated by
bounding box R8

C5432 11

Example R-Tree (Contd.)

e e el e e

C5432

Search for Objects Overlapping Box O

Start at root.

1. If current node is non-leaf, for each
entry <E, ptr>, if box E overlaps Q,
search subtree identified by ptr.

2. If current node is leaf, for each entry
<E, rid>, if E overlaps Q, rid identifies
an object that might overlap Q.

Note: May have to search several subtrees at each node!
(In contrast, a B-tree equality search goes to just one leaf.)

13

Improving Search Using Constraints

+ It is convenient to store boxes in the R-tree as
approximations of arbitrary regions, because
boxes can be represented compactly.

% But why not use convex polygons to
approximate query regions more accurately?
= Will reduce overlap with nodes in tree, and reduce

the number of nodes fetched by avoiding some
branches altogether.

= Cost of overlap test is higher than bounding box
intersection, but it is a main-memory cost, and can
actually be done quite efficiently. Generally a win.

C5432 14

Insert Entry <b, ptr>

% Start at root and go down to “best-fit” leaf L.

= Go to child whose box needs least enlargement to
cover B; resolve ties by going to smallest area child.
+ If best-fit leaf L has space, insert entry and
stop. Otherwise, split L into L1 and L2.

= Adjust entry for L in its parent so that the box now
covers (only) L1.

= Add an entry (in the parent node of L) for L2. (This
could cause the parent node to recursively split.)

C5432 15

Splitting a Node During Insertion

% The entries in node L plus the newly inserted
entry must be distributed between L1 and L2.

% Goal is to reduce likelihood of both L1 and L2
being searched on subsequent queries.

< Idea: Redistribute so as to minimize area of L1
plus area of L2.

Exhaustive algorithm is too slow;
quadratic and linear heuristics are

described in the paper. GOOD SPLIT!
BAD!

C5432 16

R-Tree Variants

4

» The R* tree uses the concept of forced reinserts to
reduce overlap in tree nodes. When a node overflows,
instead of splitting:

= Remove some (say, 30% of the) entries and reinsert them into
the tree.

= Could result in all reinserted entries fitting on some existing
pages, avoiding a split.

% R* trees also use a different heuristic, minimizing box
perimeters rather than box areas during insertion.

» Another variant, the R+ tree, avoids overlap by
inserting an object into multiple leaves if necessary.
= Searches now take a single path to a leaf, at cost of redundancy.

C5432 17

GiST

% The Generalized Search Tree (GiST) abstracts the
“tree” nature of a class of indexes including B+ trees
and R-tree variants.

= Striking similarities in insert/delete/search and even
concurrency control algorithms make it possible to provide
“templates” for these algorithms that can be customized to
obtain the many different tree index structures.

= B+ trees are so important (and simple enough to allow further

specialization) that they are implemented specially in all
DBMSs.

= GiST provides an alternative for implementing other tree
indexes in an ORDBS.

C5432 18

Indexing High-Dimensional Data

% Typically, high-dimensional datasets are collections of
points, not regions.

= E.g., Feature vectors in multimedia applications.
= Very sparse
% Nearest neighbor queries are common.

= R-tree becomes worse than sequential scan for most datasets
with more than a dozen dimensions.

% As dimensionality increases contrast (ratio of distances
between nearest and farthest points) usually decreases;
“nearest neighbor” is not meaningtul.

= In any given data set, advisable to empirically test contrast.

C5432 19

Summary

% Spatial data management has many
applications, including GIS, CAD/CAM,
multimedia indexing.

= Point and region data
= Overlap/containment and nearest-neighbor queries

% Many approaches to indexing spatial data
= R-tree approach is widely used in GIS systems

= Other approaches include Grid Files, Quad trees,
and techniques based on “space-filling” curves.

= For high-dimensional datasets, unless data has good
“contrast”, nearest-neighbor may not be well-
separated

C5432 20

C5432

Comments on R-Trees

+ Deletion consists of searching for the entry to
be deleted, removing it, and if the node
becomes under-full, deleting the node and
then re-inserting the remaining entries.

% Overall, works quite well for 2 and 3 D
datasets. Several variants (notably, R+ and R*
trees) have been proposed; widely used.

% Can improve search performance by using a
convex polygon to approximate query shape
(instead of a bounding box) and testing for

polygon-box intersection.
21

