Crash Recovery

[R&G] Chapter 18

CS432

The ACID properties

& A tomicity: All actions in the Xact happen, or none happen.

+ C onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

& Isolation: Execution of one Xact is isolated from that of
other Xacts.

« D urability: If a Xact commits, its effects persist.

+ The Recovery Manager guarantees Atomicity & Durability.

(8432

Motivation

< Atomicity:
= Transactions may abort (“Rollback”).
< Durability:
= What if DBMS stops running? (Causes?)

% Desired Behavior after

system restarts: - Cralsh!
- T1, T2 & T3 should be ™ —_— |
durable. T3 I
- T4 & T5 should be T4 !
1

aborted (effects not seen). | T5

5432 3




Assumptions

% Concurrency control is in effect.
= Strict 2PL, in particular.
< Updates are happening “in place”.
® i.e. data is overwritten on (deleted from) the disk.

% A simple scheme to guarantee Atomicity &
Durability?

C5432 4

Handling the Buffer Pool

< Force every write to disk?
= Poor response time. No Steal Steal
= But provides durability.

= .
+ Steal buffer-pool frames oree| Trivial
from uncommited Xacts?

= If not, poor throughput.

No Force Desired

= If so, how can we ensure
atomicity?

(8432

More on Steal and Force

« STEAL (why enforcing Atomicity is hard)
= To steal frame F: Current page in F (say P) is
written to disk; some Xact holds lock on P.
* What if the Xact with the lock on P aborts?

* Must remember the old value of P at steal time (to
support UNDOing the write to page P).

« NO FORCE (why enforcing Durability is hard)

= What if system crashes before a modified page is
written to disk?

= Write as little as possible, in a convenient place, at
commit time, to support REDOing modifications.

5432 6




Basic Idea: Logging

< Record REDO and UNDO information, for
every update, in a log.
= Sequential writes to log (put it on a separate disk).

* Minimal info (diff) written to log, so multiple
updates fit in a single log page.

< Log: An ordered list of REDO/UNDO actions
* Log record contains:

<XID, pagelD, offset, length, old data, new data>

= and additional control info (which we’ll see soon).

CS432

<

Write-Ahead Logging (WAL)

< The Write-Ahead Logging Protocol:

@ Must force the log record for an update before the
corresponding data page gets to disk.

@ Must write all log records for a Xact before commit.
< #1 guarantees Atomicity.
< #2 guarantees Durability.

< Exactly how is logging (and recovery!) done?
= We'll study the ARIES algorithms.

(8432

WAL & ]
the Log %

pageLSNs  flushedLSN

< Each log record has a unique Log Sequence
Log records
Number (LSN) flushed to disk
= LSNs always increasing.

+ Each data page contains a pageLSN.
= The LSN of the most recent log record

for an update to that page. /
« System keeps track of flushed LSN.
= The max LSN flushed so far. PagelSN 7 “Log tail”
in RAM

<+ WAL: Before a page is written,
= pageLSN < flushedLSN

5432




Log Records

Possible log record types:

LogRecord fields: « Update

prevLSN + Commit

XID <+ Abort

type

pagelD < End (signifies end of
update | length commit or abort)
records off?et ) % Compensation Log
only before-image Records (CLRs)

after-image

= for UNDO actions

CS432 10

Other Log-Related State

« Transaction Table:
= One entry per active Xact.

= Contains XID, status (running/commited/aborted),
and lastLSN.

% Dirty Page Table:
= One entry per dirty page in buffer pool.

= Contains recLSN -- the LSN of the log record which
first caused the page to be dirty.

(8432 11

Normal Execution of an Xact

< Series of reads & writes, followed by commit or
abort.

= We will assume that write is atomic on disk.

¢ In practice, additional details to deal with non-atomic writes.

% Strict 2PL.

« STEAL, NO-FORCE buffer management, with
Write-Ahead Logging.

5432 12




Checkpointing

« Periodically, the DBMS creates a checkpoint, in
order to minimize the time taken to recover in the
event of a system crash. Write to log:

= begin_checkpoint record: Indicates when chkpt began.
= end_checkpoint record: Contains current Xact table and
dirty page table. This is a “fuzzy checkpoint’:
¢ Other Xacts continue to run; so these tables accurate only as of
the time of the begin_checkpoint record.
* No attempt to force dirty pages to disk; effectiveness of

checkpoint limited by oldest unwritten change to a dirty page.
(Soit’s a good idea to periodically flush dirty pages to disk!)

= Store LSN of chkpt record in a safe place (master record).

CS432 13
The Big Picture:
What's Stored Where
LOG
DB ’ RAM
——~
LogRecords Xact Table
prevLSN
XID Data pages lastLSN
each status
e wina
length pageLSN Dirty Page Table
offset recLSN
before-image | Master record
after-image flushedLSN
CS432 14

Simple Transaction Abort

« For now, consider an explicit abort of a Xact.
= No crash involved.
+ We want to “play back” the log in reverse
order, UNDOing updates.
= Get lastLSN of Xact from Xact table.

= Can follow chain of log records backward via the
prevLSN field.

= Before starting UNDO, write an Abort log record.

e For recovering from crash during UNDO!

5432 15




Abort, cont. @o‘; N K%

« To perform UNDO, must have a lock on data!
= No problem!

+ Before restoring old value of a page, write a CLR:
* You continue logging while you UNDO!!

= CLR has one extra field: undonextLSN
¢ Points to the next LSN to undo (i.e. the prevLSN of the record
we're currently undoing).
= CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

< At end of UNDO, write an “end” log record.

CS432 16

Transaction Commit

< Write commit record to log.

< All log records up to Xact’s lastLSN are
flushed.
= Guarantees that flushedLLSN > lastL.SN.

= Note that log flushes are sequential, synchronous
writes to disk.

= Many log records per log page.
« Commit() returns.
< Write end record to log.

(8432 17

Crash Recovery: Big Picture

Oldest log
rec. of Xact i <« Start from a checkpoint (found
active at crash & .

: via master record).
Smallest + Three phases. Need to:
recLSN in H . .
dirty page =+ - Figure out which Xacts
;ﬂbli after  : committed since checkpoint,

HEIED H which failed (Analysis).
- REDO all actions.

Lastchkpt = # (repeat history)

l - UNDO effects of failed Xacts.
CRASH -

5432 18




Recovery: The Analysis Phase

+ Reconstruct state at checkpoint.
= via end_checkpoint record.
% Scan log forward from checkpoint.
= End record: Remove Xact from Xact table.

= Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

= Update record: If P not in Dirty Page Table,
¢ Add P to D.P.T., set its recLSN=LSN.

CS432

Recovery: The REDO Phase

< We repeat History to reconstruct state at crash:
= Reapply all updates (even of aborted Xacts!), redo CLRs.
< Scan forward from log rec containing smallest
recLSN in D.P.T. For each CLR or update log rec
LSN, REDO the action unless:
= Affected page is not in the Dirty Page Table, or
= Affected page is in D.P.T., but has recLSN > LSN, or
* pageLSN (in DB) > LSN.
< To REDO an action:
= Reapply logged action.
= Set pageLSN to LSN. No additional logging!

(8432

20

Recovery: The UNDO Phase

ToUndo={! | I alastLSN of a “loser” Xact}

Repeat:
= Choose largest LSN among ToUndo.
= [If this LSN is a CLR and undonextLSN==NULL
* Write an End record for this Xact.
= If this LSN is a CLR, and undonextLSN != NULL
¢ Add undonextLSN to ToUndo
= Else this LSN is an update. Undo the update,
write a CLR, add prevLSN to ToUndo.
Until ToUndo is empty.

5432

21




Example of Recovery

e, | SN LOG
‘ RAM 00 -— begin_checkpoint
05 — end_checkpoint
Xact Table 10 ':‘ update: T1 writes P5
lastLSN 20 % update T2 writes P3
Dirty Pa;;aEFj:ble £y _ i abort>
recLSN 40 =+ CLR: Undo|T1 L8N 10
flushedLSN 45 +T1End
50 "‘ update: T3 writes P1
ToUndo 60 _ update: T2 writes P5
5‘( CRASH, RESTART

CS432

22

Example: Crash During Restart!

LSN LOG
00,05 = begin_checkpoint, end_checkpoint
‘ RAM ‘ 10 =+ update: T1 writes P5
20 — update T2 writes P3 undonextLSN
Xact Table 30 = T1 abort
'S"’:z‘tti’\' 4045 = CLR: Undo T1 LSN 10, T1 End) |
Dirty Page Table 50 =~ update: T3 writes P1
recLSN 60 =~ update: T2 writes P5
flushedLSN X CRASH, RESTART
70 =~ CLR: Undo T2 LSN 60
flolio 80,85 = CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART
90 — CLR: Undo T2 LSN 20, T2 end ”

(8432

Additional Crash Issues

< What happens if system crashes during
Analysis? During REDO?
< How do you limit the amount of work in
REDO?
* Flush asynchronously in the background.
= Watch “hot spots”!
< How do you limit the amount of work in
UNDO?
= Avoid long-running Xacts.

5432

24




CS432

Summary of Logging/Recovery

< Recovery Manager guarantees Atomicity &
Durability.

< Use WAL to allow STEAL/NO-FORCE w/ o0
sacrificing correctness.

% LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

« pageLSN allows comparison of data page and
log records.

25

(8432

Summary, Cont.

% Checkpointing: A quick way to limit the
amount of log to scan on recovery.
% Recovery works in 3 phases:
= Analysis: Forward from checkpoint.
= Redo: Forward from oldest recLSN.

= Undo: Backward from end to first LSN of oldest
Xact alive at crash.

« Upon Undo, write CLRs.
% Redo “repeats history”: Simplifies the logic!

26




