
CS432 Fall 2007 1

Hash-Based Indexes

[R&G] Chapter 11

CS432 Fall 2007 2

Introduction

� As for any index, 3 alternatives for data entries k*:

� Data record with key value k

� <k, rid of data record with search key value k>

� <k, list of rids of data records with search key k>

� Choice orthogonal to the indexing technique

� Hash-based indexes are best for equality selections.
Cannot support range searches.

� Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees.

CS432 Fall 2007 3

Static Hashing

� # primary pages fixed, allocated sequentially,
never de-allocated; overflow pages if needed.

� h(k) mod M = bucket to which data entry with
key k belongs. (M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2

0

N-1

CS432 Fall 2007 4

Static Hashing (Contd.)

� Buckets contain data entries.

� Hash fn works on search key field of record r. Must
distribute values over range 0 ... M-1.

� h(key) = (a * key + b) usually works well.

� a and b are constants; lots known about how to tune h.

� Long overflow chains can develop and degrade
performance.

� Extendible and Linear Hashing: Dynamic techniques to fix
this problem.

CS432 Fall 2007 5

Extendible Hashing

� Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?

� Reading and writing all pages is expensive!

� Idea: Use directory of pointers to buckets, double # of
buckets by doubling the directory, splitting just the
bucket that overflowed!

� Directory much smaller than file, so doubling it is
much cheaper. Only one page of data entries is split.
No overflow page!

� Trick lies in how hash function is adjusted!

CS432 Fall 2007 6

Example

� Directory is array of size 4.

� To find bucket for r, take
last `global depth’ # bits of
h(r); we denote r by h(r).

� If h(r) = 5 = binary 101,
it is in bucket pointed to
by 01.

� Insert: If bucket is full, split it (allocate new page, re-distribute).

� If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

CS432 Fall 2007 7

Insert h(r)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

CS432 Fall 2007 8

Points to Note

� 20 = binary 10100. Last 2 bits (00) tell us r belongs in
A or A2. Last 3 bits needed to tell which.

� Global depth of directory: Max # of bits needed to tell
which bucket an entry belongs to.

� Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

� When does bucket split cause directory doubling?

� Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

CS432 Fall 2007 9

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
� Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant

CS432 Fall 2007 10

Comments on Extendible Hashing
� If directory fits in memory, equality search
answered with one disk access; else two.

� 100MB file, 100 bytes/rec, 4K pages contains 1,000,000
records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

� Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

� Multiple entries with same hash value cause problems!

� Delete: If removal of data entry makes bucket
empty, can be merged with `split image’. If each
directory element points to same bucket as its split
image, can halve directory.

CS432 Fall 2007 11

Linear Hashing

� This is another dynamic hashing scheme, an
alternative to Extendible Hashing.

� LH handles the problem of long overflow chains
without using a directory, and handles duplicates.

� Idea: Use a family of hash functions h0, h1, h2, ...

� hi(key) = h(key) mod(2iN); N = initial # buckets

� h is some hash function (range is not 0 to N-1)

� If N = 2d0, for some d0, hi consists of applying h and looking
at the last di bits, where di = d0 + i.

� hi+1 doubles the range of hi (similar to directory doubling)

CS432 Fall 2007 12

Linear Hashing (Contd.)

� Directory avoided in LH by using overflow
pages, and choosing bucket to split round-robin.

� Splitting proceeds in `rounds’. Round ends when all
NR initial (for round R) buckets are split. Buckets 0 to
Next-1 have been split; Next to NR yet to be split.

� Current round number is Level.

� Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.

•Else, r could belong to bucket hLevel(r) or bucket
hLevel(r) + NR; must apply hLevel+1(r) to find out.

CS432 Fall 2007 13

Overview of LH File

� In the middle of a round.

Levelh

Buckets that existed at the

beginning of this round:

this is the range of

Next

Bucket to be split

of other buckets) in this round

Levelh search key value)(

search key value)(

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

created (through splitting

`split image' buckets:

CS432 Fall 2007 14

Linear Hashing (Contd.)

� Insert: Find bucket by applying hLevel / hLevel+1:

� If bucket to insert into is full:

•Add overflow page and insert data entry.

• (Maybe) Split Next bucket and increment Next.

� Can choose any criterion to `trigger’ split.

� Since buckets are split round-robin, long overflow
chains don’t develop!

� Doubling of directory in Extendible Hashing is
similar; switching of hash functions is implicit in
how the # of bits examined is increased.

CS432 Fall 2007 15

Example of Linear Hashing

� On split, hLevel+1 is used to
re-distribute entries.

0

hh

1

(This info

is for illustration

only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary

bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0

hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100

CS432 Fall 2007 16

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY

PAGES
OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES

OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

CS432 Fall 2007 17

LH Described as a Variant of EH
� The two schemes are actually quite similar:

� Begin with an EH index where directory has N elements.

� Use overflow pages, split buckets round-robin.

� First split is at bucket 0. (Imagine directory being doubled
at this point.) But elements <1,N+1>, <2,N+2>, ... are the
same. So, need only create directory element N, which
differs from 0, now.
• When bucket 1 splits, create directory element N+1, etc.

� So, directory can double gradually. Also, primary
bucket pages are created in order. If they are allocated
in sequence too (so that finding i’th is easy), we
actually don’t need a directory! Voila, LH.

CS432 Fall 2007 18

Summary

� Hash-based indexes: best for equality searches,
cannot support range searches.

� Static Hashing can lead to long overflow chains.

� Extendible Hashing avoids overflow pages by
splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow pages.)

� Directory to keep track of buckets, doubles periodically.

� Can get large with skewed data; additional I/O if this
does not fit in main memory.

CS432 Fall 2007 19

Summary (Contd.)

� Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.

� Overflow pages not likely to be long.

� Duplicates handled easily.

� Space utilization could be lower than Extendible Hashing,
since splits not concentrated on `dense’ data areas.

•Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

� For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

