CS432 Assignment 2: SQL, Indexing, and Sorting

· Due October 15, 11:59 PM. No late submissions will be accepted. The course management system will not accept any submissions after the deadline, and you will receive 0% of the grade for this assignment if you do not turn it in by the deadline.

· This is an individual assignment, and you should not collaborate with anyone.

· Standalone Windows and Linux binaries for the small command-line SQLite interface can be found at www.sqlite.org/download.html

· This assignment is worth 10% of your overall grade

· Please ask any questions that you might have to cs432ta-l@cs.cornell.edu

Part A: SQL (50 points)

Introduction

In this assignment you will issue real queries to a database containing data about a university, which can be generated from the SQL commands found in the file a2db.txt. The schema of the database is provided below (keys are in bold, field types are omitted):

· student(sid, sname, sex, age, year, gpa)

· dept(dname, numphds)

· prof(pname, dname)

· course(cno, cname, dname)

· major(dname, sid)

· section(dname, cno, sectno, pname)

· enroll(sid, grade, dname, cno, sectno)

Download SQLite at the link above, run it by double-clicking the file and, at the prompt, import the database by executing
sqlite> .read a2db.txt

Now you can issue SQL queries. As an alternative to entering queries interactively, you can also put them into a text file and run them using .read. Help can be obtained using

sqlite> .help

You can exit SQLite using

sqlite> .quit

You should familiarize yourself with the contents of the database before you start writing queries.

Queries

Write SQL queries that answer the questions below (one query per question) and run them. The query answers must not contain duplicates, but you should use the SQL keyword distinct only when necessary.

The SQLite interpreter might not process all commands exactly as described in the book, but any incompatibilities should present little difficulty. For each question you must write exactly one SQL statement. Your queries should be correct in the general setting, and not merely produce correct results for the specific contents of this database.

Write the following SQL queries (10 points each):

1. Print the names and sids of all students not enrolled in any classes.

2. Print the names of departments that have no majors taking a course offered by the Computer Science department.

3. Print the name of the department where the number of male majors most exceeds the number of female majors.

4. Print the name and department of all students with the highest GPAs.

5. Print the names of the students who are taking all the courses currently offered by some department.

Part B: Tree Indexing (20 points)

B.1) Consider an empty B+ tree of order 2 that is designed to index integer values. Assume that the sequence of integers 1 to 18 is inserted into the B+ tree and then all the prime numbers are deleted from the B+ tree (from smallest to largest). Draw the resulting B+ tree. Assume that on an overflow, you always split, and that on an underflow, you always choose redistribution over merging if both options are available. (10 points)

B.2) What is the fewest number of entries that can be stored in a B+ tree of order d and height h that was constructed from an empty tree by a sequence of (only) insertions? Assume that on an overflow, you always split. (10 points)

Part C: Hash Indices (20 points)

Consider a hash index which uses the hash function h(x) = x, and in which each hash bucket can hold 2 data items. The hash index is initially empty and contains 4 buckets (i.e., it uses the last two bits of h(x) initially, although no data items are currently in the hash index). Now consider the following sequence of insertions into the hash index: 15, 63, 0, 16, 31, 47, 32, 48.

C.1) If the above hash index uses extendible hashing, show the final state of the index after the insertions. Clearly show the directory, bucket entries, global and local depths in your diagram. (10 points)

C.2) If the above hash index uses linear hashing, show the final state of the index after the insertions. Clearly show the bucket entries and the 'next' pointer. (8 points)

Part D: External Sorting (10 points)

Suppose there are 336,896 data pages in a file stored sequentially on the disk that you want to sort using the external mergesort algorithm with the replacement sort implementation. There are 512 pages available in the buffer and you use blocked I/O and double buffering with buffer blocks of 16 pages. Assume average seek time = 10 ms, average rotational delay = 5 ms, transfer time = 1ms/page. Compute the total time (I/O + processing) required to sort the file if the time taken by the processor to process a single page is 1ms.

