Introduction to Database Systems

Database Management Systems, R. Ramakrishnan and J. Gehrke

Why Study Databases??

- ❖ Shift from *computation* to *information*
 - at the "low end": scramble to webspace (a mess!)
 - at the "high end": scientific applications
- Datasets increasing in diversity and volume.
 - Digital libraries, interactive video, Human Genome project, EOS project
 - ... need for DBMS exploding
- * DBMS encompasses most of CS
 - OS, languages, theory, "A"I, multimedia, logic

Database Management Systems, R. Ramakrishnan and J. Gehrke

What Is a DBMS?

- * A very large, integrated collection of data
- * Models real-world enterprise
 - Entities (e.g., students, courses)
 - Relationships (e.g., Madonna is taking CS432)
- A <u>Database Management System (DBMS)</u> is a software package designed to store and manage databases

Database Management Systems, R. Ramakrishnan and J. Gehrke

Why Use a DBMS?

- ❖ Reduced application development time (Queries)
- Data independence and efficient access
- * Concurrent access
- Crash recovery
- * Uniform data administration

Database Management Systems, R. Ramakrishnan and J. Gehrke

Data Models

- A <u>data model</u> is a collection of concepts for describing data.
- A <u>schema</u> is a description of a particular collection of data, using the a given data model.
- * The <u>relational model of data</u> is the most widely used model today.
 - Main concept: <u>relation</u>, basically a table with rows and columns.
 - Every relation has a <u>schema</u>, which describes the columns, or fields.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Queries

Database Management Systems, R. Ramakrishnan and J. Gehrke

Data Independence

- Applications insulated from how data is structured and stored.
- * <u>Physical data independence</u>: Protection from changes in *physical* structure of data.
- <u>Logical data independence</u>: Protection from changes in *logical* structure of data.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Concurrency Control

Database Management Systems, R. Ramakrishnan and J. Gehrke

Recovery

Database Management Systems, R. Ramakrishnan and J. Gehrke

Structure of a DBMS

Query Optimization and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

concurrency control and

 The figure does not show the concurrency control and recovery components.

A typical DBMS has a

layered architecture.

 This is one of several possible architectures; each system has its own variations.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Summary

- * DBMS used to maintain, query large datasets.
 - Benefits include quick application development, data independence, concurrency control, recovery
- $\boldsymbol{\diamond}$ A DBMS typically has a layered architecture.
- DBMS R&D is one of the broadest, most exciting areas in CS.
- DBAs hold responsible jobs and are well-paid!

Database Management Systems, R. Ramakrishnan and J. Gehrke

11