Database Tuning

Database Management Systems, 2+ Edition. R. Ramakrishnan and J. Gehrke

\Overview

¢ You have created an ER diagram, generated
relations and populated them

L4

... but performance is terrible!

L1g

What are possible techniques?

— Indices

— Clustering

— Schema changes (denormalization, etc.)
— Rewriting queries!

¢ Key is to understand the workload

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 2

\Understanding the Workload

¢ For each query in the workload:
- Which relations does it access?
- Which attributes are retrieved?
- Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?
For each update in the workload:
- Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

- The type of update (INSERT/DELETE/UPDATE), and the attributes
that are affected

Lld

Lld

How important is a query/update?
- Frequent, long-running queries are usually the most important to
optimize

Database Management Systems, 2" Edition. R. Ramakrishnan and J. Gehrke

%dices and Clustering: Decisions to Make
¢ What indexes should we create?
- Which relations should have indexes?
- What field(s) should be the search key?
- Should we build several indexes?
¢ For each index, what kind of an index should it be?
- Clustered?
- Hash/tree?
¢ Need to apply your knowledge of indexing

- Also need to make sure that optimizer uses the indices!
(including index-only plans)
Need to aggly‘gg&g kﬁ&‘ﬂ?&iﬁe of oEtimizers!

Database Management Sy: and . Gehrke 4

Choice of Indexes

One approach
— Consider the most important queries in turn

— Consider the best plan using the current indexes, and
see if a better plan is possible with an additional index

— If so, create the additional index
— “Greedy”

¢ Before creating an index, must also consider the
impact on updates in the workload!

- Trade-off: indexes can make queries go faster, updates
slower

- Require disk space, too (secondary issue)
+ Have been attempts to automate this

Database Management Systems, 2+ Edition. R. Ramakrishnan and J. Gehrke

\T uning the Conceptual Schema

¢ Should be guided by the workload, in addition to
redundancy issues:
- We may settle for a 3NF schema rather than BCNF.
- We may further decompose a BCNF schema!

- We might denormalize (i.e., undo a decomposition
step), or we might add fields to a relation.

- We might consider horizontal decompositions.

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 6

\Example Schemas

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)
+ We will concentrate on Contracts, denoted as
CSJDPQV. The following ICs are given to hold:
JP— C, SD - P, Cis the primary key.
- What are the keys for CSJDPQV?
- What normal form is this relation schema in?

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 7

\Settling for 3NF vs BCNF

CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF.
- Lossless decomposition, but not dependency-preserving.
- Adding CJP makes it dependency-preserving as well.
¢ Suppose that this query is very important:
- Find the number of copies Q of part P ordered in contract C.

- Requires a join on the decomposed schema, but can be
answered by a scan of the original relation CSJDPQV.
- Could lead us to settle for the 3NF schema CSJDPQV.

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 8

Denormalization

¢ Suppose that the following query is important:
~ Is the value of a contract less than the budget of the department?
¢ To speed up this query, we might add a field budget B
to Contracts.
- This introduces the FD D — B in Contracts
- Thus, Contracts is no longer in 3NF.
¢ We might choose to modify Contracts thus if the
query is sufficiently important
— Note: we cannot improve performance otherwise (i.e., by
adding indexes or by choosing an alternative 3NF schema.)

Database Management Systems, 2" Edition. R. Ramakrishnan and J. Gehrke 9

\Choice of Decompositions

¢ There are 2 ways to decompose CSJDPQV:
- SDP and CSJDQV; lossless-join but not dep-preserving.
- SDP, CSJDQV and CJP; dep-preserving as well.

¢ The difference between these is really the cost of

enforcing the FDJP - C.

- 2nd decomposition: Index on JP on relation CJP.

st CREATE ASSERTION CheckDep
CHECK (NOT EXISTS (SELECT *
FROM PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUP BY Cijid, P.pid
HAVING COUNT (C.cid) > 1))

Database Management Systems, 2" Edition. R. Ramakrishnan and J. Gehrke 10

Choice of Decompositions (Contd.)

¢ The following ICs were given to hold:
JP - C, SD - P, Cis the primary key.
¢ Suppose that, in addition, a given supplier always
charges the same price for a given part: SPQ — V.
¢ If we decide that we want to decompose CSJDPQV
into BCNF, we now have a third choice:
- Begin by decomposing it into SPQV and CSJDPQ.
- Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.
- This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.
- To preserve JP — C, we can add CJP, as before.

¢ Choice: {SPQV, SDP, CSJDQ } or { kSDP, CSJIDQV | ?

Database Management Systems, 2+ Edition. R. Ramakrishnan and J. Gehrke

Decomposition of a BCNF Relation

Suppose that we choose { SDP, CSJDQV }. This is in
BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

¢ However, suppose that these queries are important:

- Find the contracts held by supplier S.
- Find the contracts that department D is involved in.

¢ Decomposing CSJDQV further into CS, CD and CJQV
could speed up these queries. (Why?)

% On the other hand, the following query is slower:
- Find the total value of all contracts held by supplier S.

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 12

Horizontal Decompositions

¢ Our definition of decomposition: Relation is replaced
by a collection of relations that are projections. Most
important case.

Sometimes, might want to replace relation by a
collection of relations that are selections.

- Each new relation has same schema as the original, but a
subset of the rows.

- Collectively, new relations contain all rows of the original.
Typically, the new relations are disjoint.

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 13

Horizontal Decompositions (Contd.)

¢ Suppose that contracts with value > 10000 are subject
to different rules. This means that queries on
Contracts will often contain the condition val>10000.

¢ One way to deal with this is to build a clustered B+
tree index on the val field of Contracts.

¢ A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with
the same attributes (CSJDPQV).
- Performs like index on such queries, but no index overhead.
- Can build clustered indexes on other attributes, in addition!

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 14

\Logical Data Independence

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

¢ The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

¢ However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be
aware of the change.

Database Management Systems, 2" Edition. R. Ramakrishnan and J. Gehrke 15

Tuning Queries and Views

¢ If a query runs slower than expected, check if an
index needs to be re-built, or if statistics are too old.
¢ Sometimes, the DBMS may not be executing the plan
you had in mind. Common areas of weakness:
- Selections involving null values.
- Selections involving arithmetic or string expressions.
- Selections involving OR conditions.

- Lack of evaluation features like index-only strategies or
certain join methods or poor size estimation.

¢ Check the plan that is being used! Then adjust the
choice of indexes or rewrite the query/view.

Database Management Systems, 2" Edition. R. Ramakrishnan and J. Gehrke 16

Rewriting SQL Queries
* plicated by interaction of:
- NULLs, duplicates, aggregation, subqueries.

¢ Guideline: Use only one “query block”, if possible.

SELECT DI STINCT *
FROM Sailors S
WHERE S. snanme | N
(SELECT Y. snane
FROM YoungSai l ors YY)

SELECT DI STINCT S. *
— FROM Sai lors S,
- YoungSai l ors Y
WHERE S. sname = Y. snane

¢ Not always possible ...

SELECT *
FROM Sailors S ﬁ
WHERE S. sname | N
(SELECT DI STI NCT Y. snane
FROM YoungSai | ors Y)

Database Management Systems, 2™ Edition. R. Ramakrishnan and . Gehrke 17

SELECT S.*
FROM Sailors S,
YoungSai lors Y
WHERE S. snanme = Y.snanme

