
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 1

Database Tuning

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 2

Overview

� You have created an ER diagram, generated
relations and populated them

� … but performance is terrible!
� What are possible techniques?

– Indices
– Clustering
– Schema changes (denormalization, etc.)
– Rewriting queries!

� Key is to understand the workload

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 3

Understanding the Workload

� For each query in the workload:
– Which relations does it access?
– Which attributes are retrieved?
– Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?

� For each update in the workload:
– Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?
– The type of update (INSERT/DELETE/UPDATE), and the attributes

that are affected

� How important is a query/update?
– Frequent, long-running queries are usually the most important to

optimize
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 4

Indices and Clustering: Decisions to Make

� What indexes should we create?
– Which relations should have indexes?
– What field(s) should be the search key?
– Should we build several indexes?

� For each index, what kind of an index should it be?
– Clustered?
– Hash/tree?

� Need to apply your knowledge of indexing
– Also need to make sure that optimizer uses the indices!

(including index-only plans)
– Need to apply your knowledge of optimizers!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 5

Choice of Indexes

� One approach
– Consider the most important queries in turn
– Consider the best plan using the current indexes, and

see if a better plan is possible with an additional index
– If so, create the additional index
– “Greedy”

� Before creating an index, must also consider the
impact on updates in the workload!

– Trade-off: indexes can make queries go faster, updates
slower

– Require disk space, too (secondary issue)
� Have been attempts to automate this

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 6

Tuning the Conceptual Schema

� Should be guided by the workload, in addition to
redundancy issues:

– We may settle for a 3NF schema rather than BCNF.
– We may further decompose a BCNF schema!
– We might denormalize (i.e., undo a decomposition

step), or we might add fields to a relation.
– We might consider horizontal decompositions.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 7

Example Schemas

� We will concentrate on Contracts, denoted as
CSJDPQV. The following ICs are given to hold:

JP C, SD P, C is the primary key.
– What are the keys for CSJDPQV?
– What normal form is this relation schema in?

→ →

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 8

Settling for 3NF vs BCNF

� CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF.

– Lossless decomposition, but not dependency-preserving.
– Adding CJP makes it dependency-preserving as well.

� Suppose that this query is very important:
– Find the number of copies Q of part P ordered in contract C.
– Requires a join on the decomposed schema, but can be

answered by a scan of the original relation CSJDPQV.
– Could lead us to settle for the 3NF schema CSJDPQV.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 9

Denormalization

� Suppose that the following query is important:
– Is the value of a contract less than the budget of the department?

� To speed up this query, we might add a field budget B
to Contracts.

– This introduces the FD D B in Contracts
– Thus, Contracts is no longer in 3NF.

� We might choose to modify Contracts thus if the
query is sufficiently important
– Note: we cannot improve performance otherwise (i.e., by

adding indexes or by choosing an alternative 3NF schema.)

→

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 10

Choice of Decompositions

� There are 2 ways to decompose CSJDPQV:
– SDP and CSJDQV; lossless-join but not dep-preserving.
– SDP, CSJDQV and CJP; dep-preserving as well.

� The difference between these is really the cost of
enforcing the FD JP C.

– 2nd decomposition: Index on JP on relation CJP.
– 1st:

→

CREATE ASSERTION CheckDep
CHECK (NOT EXISTS (SELECT *
FROM PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUP BY C.jid, P.pid
HAVING COUNT (C.cid) > 1))

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 11

Choice of Decompositions (Contd.)
� The following ICs were given to hold:

JP C, SD P, C is the primary key.
� Suppose that, in addition, a given supplier always

charges the same price for a given part: SPQ V.
� If we decide that we want to decompose CSJDPQV

into BCNF, we now have a third choice:
– Begin by decomposing it into SPQV and CSJDPQ.
– Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.
– This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.
– To preserve JP C, we can add CJP, as before.

� Choice: { SPQV, SDP, CSJDQ } or { SDP, CSJDQV } ?

→ →

→

→

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 12

Decomposition of a BCNF Relation

� Suppose that we choose { SDP, CSJDQV }. This is in
BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

� However, suppose that these queries are important:
– Find the contracts held by supplier S.
– Find the contracts that department D is involved in.

� Decomposing CSJDQV further into CS, CD and CJQV
could speed up these queries. (Why?)

� On the other hand, the following query is slower:
– Find the total value of all contracts held by supplier S.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 13

Horizontal Decompositions

� Our definition of decomposition: Relation is replaced
by a collection of relations that are projections. Most
important case.

� Sometimes, might want to replace relation by a
collection of relations that are selections.

– Each new relation has same schema as the original, but a
subset of the rows.

– Collectively, new relations contain all rows of the original.
Typically, the new relations are disjoint.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 14

Horizontal Decompositions (Contd.)

� Suppose that contracts with value > 10000 are subject
to different rules. This means that queries on
Contracts will often contain the condition val>10000.

� One way to deal with this is to build a clustered B+
tree index on the val field of Contracts.

� A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with
the same attributes (CSJDPQV).

– Performs like index on such queries, but no index overhead.
– Can build clustered indexes on other attributes, in addition!

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 15

Logical Data Independence

� The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

� However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be
aware of the change.

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 16

Tuning Queries and Views
� If a query runs slower than expected, check if an

index needs to be re-built, or if statistics are too old.
� Sometimes, the DBMS may not be executing the plan

you had in mind. Common areas of weakness:
– Selections involving null values.
– Selections involving arithmetic or string expressions.
– Selections involving OR conditions.
– Lack of evaluation features like index-only strategies or

certain join methods or poor size estimation.

� Check the plan that is being used! Then adjust the
choice of indexes or rewrite the query/view.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 17

Rewriting SQL Queries
� Complicated by interaction of:

– NULLs, duplicates, aggregation, subqueries.

� Guideline: Use only one “query block”, if possible.
SELECT DISTINCT *
FROM Sailors S

WHERE S.sname IN
(SELECT Y.sname

FROM YoungSailors Y)

SELECT DISTINCT S.*
FROM Sailors S,

YoungSailors Y
WHERE S.sname = Y.sname

SELECT *
FROM Sailors S

WHERE S.sname IN
(SELECT DISTINCT Y.sname

FROM YoungSailors Y)

SELECT S.*
FROM Sailors S,

YoungSailors Y
WHERE S.sname = Y.sname

� Not always possible ...

=

=

