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Database Tuning
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Overview

� You have created an ER diagram, generated 
relations and populated them

� … but performance is terrible!
� What are possible techniques?

– Indices
– Clustering
– Schema changes (denormalization, etc.)
– Rewriting queries!

� Key is to understand the workload
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Understanding the Workload

� For each query in the workload:
– Which relations does it access?
– Which attributes are retrieved?
– Which attributes are involved in selection/join conditions?  How

selective are these conditions likely to be? 

� For each update in the workload:
– Which attributes are involved in selection/join conditions?  How

selective are these conditions likely to be?
– The type of update (INSERT/DELETE/UPDATE), and the attributes 

that are affected

� How important is a query/update?
– Frequent, long-running queries are usually the most important to 

optimize
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Indices and Clustering: Decisions to Make

� What indexes should we create?
– Which relations should have indexes?
– What field(s) should be the search key?
– Should we build several indexes?

� For each index, what kind of an index should it be?
– Clustered?
– Hash/tree?

� Need to apply your knowledge of indexing
– Also need to make sure that optimizer uses the indices! 

(including index-only plans)
– Need to apply your knowledge of optimizers!
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Choice of Indexes

� One approach
– Consider the most important queries in turn
– Consider the best plan using the current indexes, and 

see if a better plan is possible with an additional index
– If so, create the additional index
– “Greedy”

� Before creating an index, must also consider the 
impact on updates in the workload!

– Trade-off: indexes can make queries go faster, updates 
slower

– Require disk space, too (secondary issue)
� Have been attempts to automate this
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Tuning the Conceptual Schema

� Should be guided by the workload, in addition to 
redundancy issues:

– We may settle for a 3NF schema rather than BCNF.
– We may further decompose a BCNF schema!
– We might denormalize (i.e., undo a decomposition 

step), or we might add fields to a relation.
– We might consider horizontal decompositions.
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Example Schemas

� We will concentrate on Contracts, denoted as 
CSJDPQV.  The following ICs are given to hold:        

JP      C,  SD       P,  C is the primary key.
– What are the keys for CSJDPQV?  
– What normal form is this relation schema in?

→ →

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)
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Settling for 3NF vs BCNF

� CSJDPQV can be decomposed into SDP and CSJDQV,  
and both relations are in BCNF.

– Lossless decomposition, but not dependency-preserving. 
– Adding CJP makes it dependency-preserving as well.

� Suppose that this query is very important:
– Find the number of copies Q of part P ordered in contract C.
– Requires a join on the decomposed schema, but can be 

answered by a scan of the original relation CSJDPQV.
– Could lead us to settle for the 3NF schema CSJDPQV.
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Denormalization

� Suppose that the following query is important:
– Is the value of a contract less than the budget of the department?

� To speed up this query, we might add a field budget B 
to Contracts.  

– This introduces the FD  D        B in Contracts
– Thus, Contracts is no longer in 3NF.

� We might choose to modify Contracts thus if the 
query is sufficiently important
– Note: we cannot improve performance otherwise (i.e., by 

adding indexes or by choosing an alternative 3NF schema.)

→
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Choice of Decompositions

� There are 2 ways to decompose CSJDPQV:
– SDP and CSJDQV; lossless-join but not dep-preserving.
– SDP, CSJDQV and CJP; dep-preserving as well.

� The difference between these is really the cost of 
enforcing the FD JP        C.

– 2nd decomposition:  Index on JP on relation CJP.
– 1st:

→

CREATE ASSERTION   CheckDep
CHECK  ( NOT EXISTS  ( SELECT  *
FROM  PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUP BY C.jid, P.pid
HAVING  COUNT (C.cid) > 1  ))
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Choice of Decompositions (Contd.)
� The following ICs were given to hold:        

JP      C,  SD       P,  C is the primary key.  
� Suppose that, in addition, a given supplier always 

charges the same price for a given part:  SPQ        V.
� If we decide that we want to decompose CSJDPQV 

into BCNF, we now have a third choice:
– Begin by decomposing it into SPQV and CSJDPQ.
– Then, decompose CSJDPQ  (not in 3NF) into SDP, CSJDQ.
– This gives us the lossless-join decomp:  SPQV, SDP, CSJDQ.
– To preserve JP       C, we can add CJP, as before.

� Choice: { SPQV, SDP, CSJDQ } or { SDP, CSJDQV }  ?

→ →

→

→
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Decomposition of a BCNF Relation

� Suppose that we choose { SDP, CSJDQV }.  This is in 
BCNF, and there is no reason to decompose further  
(assuming that all known ICs are FDs).

� However, suppose that these queries are important:
– Find the contracts held by supplier S.
– Find the contracts that department D is involved in.

� Decomposing CSJDQV further into CS, CD and CJQV 
could speed up these queries.  (Why?)

� On the other hand, the following query is slower:
– Find the total value of all contracts held by supplier S.
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Horizontal Decompositions

� Our definition of decomposition:  Relation is replaced 
by a collection of relations that are projections.   Most 
important case.

� Sometimes, might want to replace relation by a 
collection of relations that are selections.

– Each new relation has same schema as the original, but a 
subset of the rows.

– Collectively, new relations contain all rows of the original. 
Typically, the new relations are disjoint.
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Horizontal Decompositions (Contd.)

� Suppose that contracts with value > 10000 are subject 
to different rules.  This means that queries on 
Contracts will often contain the condition val>10000.  

� One way to deal with this is to build a clustered B+ 
tree index on the val field of Contracts.

� A second approach is to replace contracts by two new 
relations:  LargeContracts and SmallContracts, with 
the same attributes (CSJDPQV).

– Performs like index on such queries, but no index overhead.
– Can build clustered indexes on other attributes, in addition!
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Logical Data Independence

� The replacement of Contracts by LargeContracts and 
SmallContracts can be masked by the view.

� However, queries with the condition val>10000 must 
be asked wrt LargeContracts for efficient execution:  
so users concerned with performance have to be 
aware of the change.

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS  SELECT * 
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts
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Tuning Queries and Views
� If a query runs slower than expected, check if an 

index needs to be re-built, or if statistics are too old.
� Sometimes, the DBMS may not be executing the plan 

you had in mind.  Common areas of weakness:
– Selections involving null values.
– Selections involving arithmetic or string expressions.
– Selections involving OR conditions.
– Lack of evaluation features like index-only strategies or 

certain join methods or poor size estimation.

� Check the plan that is being used!  Then adjust the 
choice of indexes or rewrite the query/view.
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Rewriting SQL Queries
� Complicated by interaction of:

– NULLs, duplicates, aggregation, subqueries.

� Guideline: Use only one “query block”, if possible.
SELECT DISTINCT *
FROM Sailors S

WHERE S.sname IN
(SELECT Y.sname

FROM YoungSailors Y)

SELECT DISTINCT S.*
FROM Sailors S, 

YoungSailors Y
WHERE S.sname = Y.sname

SELECT *
FROM Sailors S

WHERE S.sname IN
(SELECT DISTINCT Y.sname

FROM YoungSailors Y)

SELECT S.*
FROM Sailors S, 

YoungSailors Y
WHERE S.sname = Y.sname

� Not always possible ...

=

=


