
1

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Concurrency Control

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Goal of Concurrency Control

� Transactions should be executed so that it is
as though they executed in some serial order
� Also called Isolation or Serializability

� Weaker variants also possible
� Lower “degrees of isolation”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Example

� Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

� T1 transfers $100 from B’s account to A’s account
� T2 credits both accounts with 6% interest
� If submitted concurrently, net effect should be

equivalent to Xacts running in some serial order
� No guarantee that T1 “logically” occurs before T2 (or

vice-versa) – but one of them is true
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Solution 1

1) Get exclusive lock on entire database
2) Execute transaction
3) Release exclusive lock

� Similar to “critical sections” in operating systems
� Serializability guaranteed because execution is

serial!

� Problems?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Solution 2

1) Get exclusive locks on accessed data items
2) Execute transaction
3) Release exclusive locks

� Greater concurrency

� Problems?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Solution 3

1) Get exclusive locks on data items that are modified;
get shared locks on data items that are only read

2) Execute transaction
3) Release all locks

� Greater concurrency
� Conservative Strict Two Phase Locking (2PL)

� Problems?

S

X

S X

Yes No

NoNo

2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Solution 4

1) Get exclusive locks on data items that are modified and
get shared locks on data items that are read

2) Execute transaction and release locks on objects no longer
needed during execution

� Greater concurrency
� Conservative Two Phase Locking (2PL)

� Problems?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Solution 5

1) Get exclusive locks on data items that are modified and
get shared locks on data items that are read, but do this
during execution of transaction (as needed)

2) Release all locks

� Greater concurrency
� Strict Two Phase Locking (2PL)

� Problems?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Solution 6

1) Get exclusive locks on data items that are modified and
get shared locks on data items that are read, but do this
during execution of transaction (as needed)

2) Release locks on objects no longer needed during
execution of transaction

3) Cannot acquire locks once any lock has been released
� Hence two-phase (acquiring phase and releasing phase)

� Greater concurrency
� Two Phase Locking (2PL)

� Problems?
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Summary of Alternatives
� Conservative Strict 2PL

� No deadlocks, no cascading aborts
� But need to know objects a priori, when to release locks

� Conservative 2PL
� No deadlocks, more concurrency than Conservative Strict 2PL
� But need to know objects a priori, when to release locks, cascading

aborts
� Strict 2PL

� No cascading aborts, no need to know objects a priori or when to
release locks, more concurrency than Conservative Strict 2PL

� But deadlocks
� 2PL

� Most concurrency, no need to know object a priori
� But need to know when to release locks, cascading aborts, deadlocks

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Method of Choice

� Strict 2PL
� No cascading aborts, no need to know objects a priori or when to

release locks, more concurrency than Conservative Strict 2PL
� But deadlocks

� Reason for choice
� Cannot know objects a priori, so no Conservative options
� Thus only 2PL and Strict 2PL left
� 2PL needs to know when to release locks (main problem)

• Also has cascading aborts

� Hence Strict 2PL

� Implication
� Need to deal with deadlocks!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Lock Management

� Lock and unlock requests are handled by the lock
manager

� Lock table entry:
� Number of transactions currently holding a lock
� Type of lock held (shared or exclusive)
� Pointer to queue of lock requests

� Locking and unlocking have to be atomic operations
� Lock upgrade: transaction that holds a shared lock

can be upgraded to hold an exclusive lock

3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Outline

� Formal definition of serializability
� Deadlock prevention and detection
� Advanced locking techniques
� Lower degrees of isolation
� Concurrency control for index structures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Example

� Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

� This is OK. But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

� The DBMS’s view of the second schedule:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Scheduling Transactions

� Serial schedule: Schedule that does not interleave the
actions of different transactions.

� Equivalent schedules: For any database state
� The effect (on the set of objects in the database) of executing

the schedules is the same
� The values read by transactions is the same in the schedules

• Assume no knowledge of transaction logic

� Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Anomalies with Interleaved Execution

� Reading Uncommitted Data (WR Conflicts,
“dirty reads”):

� Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Anomalies (Continued)

� Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Conflict Serializable Schedules

� Two schedules are conflict equivalent if:
� Involve the same actions of the same transactions
� Every pair of conflicting actions is ordered the

same way

� Schedule S is conflict serializable if S is
conflict equivalent to some serial schedule

4

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Example

� A schedule that is not conflict serializable:

� The cycle in the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Dependency Graph

� Dependency graph: One node per Xact; edge
from Ti to Tj if Tj reads/writes an object last
written by Ti.

� Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Lock-Based Concurrency Control

� Strict Two-phase Locking (Strict 2PL) Protocol:
� Each Xact must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before writing
� All locks held by a transaction are released when the

transaction completes
� If an Xact holds an X lock on an object, no other Xact can

get a lock (S or X) on that object.

� Strict 2PL allows only serializable schedules
� Dependency graph is always acyclic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Returning to Definition of Serializability

� A schedule S is serializable if there exists a
serial order SO such that:
� The state of the database after S is the same as the

state of the database after SO
� The values read by each transaction in S is the

same as that returned by each transaction in SO
• Database does not know anything about the internal

structure of the transaction programs

� Under this definition, certain serializable
executions are not conflict serializable!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Example

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

View Serializability
� Schedules S1 and S2 are view equivalent if:

� If Ti reads initial value of A in S1, then Ti also reads
initial value of A in S2

� If Ti reads value of A written by Tj in S1, then Ti also
reads value of A written by Tj in S2

� If Ti writes final value of A in S1, then Ti also writes
final value of A in S2

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Outline

� Formal definition of serializability
� Deadlock prevention and detection
� Advanced locking techniques
� Lower degrees of isolation
� Concurrency control for index structures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Deadlocks

� Deadlock: Cycle of transactions waiting for
locks to be released by each other.

� Two ways of dealing with deadlocks:
� Deadlock prevention
� Deadlock detection

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Deadlock Prevention

� Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds. Two
policies are possible:
� Wait-Die: It Ti has higher priority, Ti waits for Tj;

otherwise Ti aborts
� Wound-wait: If Ti has higher priority, Tj aborts;

otherwise Ti waits

� If a transaction re-starts, make sure it has its
original timestamp

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Deadlock Detection

� Create a waits-for graph:
� Nodes are transactions
� There is an edge from Ti to Tj if Ti is waiting for Tj

to release a lock

� Periodically check for cycles in the waits-for
graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Deadlock Detection

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Outline

� Formal definition of serializability
� Deadlock prevention and detection
� Advanced locking techniques
� Lower degrees of isolation
� Concurrency control for index structures

6

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Multiple-Granularity Locks

� Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

� Shouldn’ t have to decide!
� Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Solution: New Lock Modes, Protocol

� Allow Xacts to lock at each level, but with a
special protocol using new “ intention” locks:

� Before locking an item, Xact
must set “ intention locks”
on all its ancestors.

� For unlock, go from specific
to general (i.e., bottom-up).

� SIX mode: Like S & IX at
the same time.

-- IS IX

--

IS

IX

√

√

√

√ √

√

S X

√
√

S

X

√ √

√

√

√

√ √

√

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Multiple Granularity Lock Protocol

� Each Xact starts from the root of the hierarchy.
� To get S or IS lock on a node, must hold IS or IX

on parent node.
� What if Xact holds SIX on parent? S on parent?

� To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

� Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Examples

� T1 scans R, and updates a few tuples:
� T1 gets an SIX lock on R, then repeatedly gets an S

lock on tuples of R, and occasionally upgrades to
X on the tuples.

� T2 uses an index to read only part of R:
� T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R.

� T3 reads all of R:
� T3 gets an S lock on R.
� OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX

√
√
√

√ √
√

S X

√
√

S

X

√ √
√

√

√
√ √

√

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Dynamic Databases

� If we relax the assumption that the DB is a
fixed collection of objects, even Strict 2PL will
not assure serializability:
� T1 locks all pages containing sailor records with

rating = 1, and finds oldest sailor (say, age = 71).
� Next, T2 inserts a new sailor; rating = 1, age = 96.
� T2 also deletes oldest sailor with rating = 2 (and,

say, age = 80), and commits.
� T1 now locks all pages containing sailor records

with rating = 2, and finds oldest (say, age = 63).

� No consistent DB state where T1 is “correct” !
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

The Problem

� T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.
� Assumption only holds if no sailor records are

added while T1 is executing!
� Need some mechanism to enforce this

assumption. (Index locking and predicate
locking.)

� Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

7

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Index Locking

� If there is a dense index on the rating field
using Alternative (2), T1 should lock the
index page containing the data entries with
rating = 1.
� If there are no records with rating = 1, T1 must

lock the index page where such a data entry would
be, if it existed!

� If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new
pages from being added, to ensure that no
new records with rating = 1 are added.

r=1

Data
Index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Predicate Locking

� Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

� Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.
� What is the predicate in the sailor example?

� In general, predicate locking has a lot of
locking overhead.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Outline

� Formal definition of serializability
� Deadlock prevention and detection
� Advanced locking techniques
� Lower degrees of isolation
� Concurrency control for index structures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Transaction Support in SQL-92

� Each transaction has an access mode, a
diagnostics size, and an isolation level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom
Problem

Unrepeatable
Read

Dirty
Read

Isolation Level

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

Outline

� Formal definition of serializability
� Lower degrees of isolation
� Deadlock prevention and detection
� Advanced locking techniques
� Concurrency control for index structures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Locking in B+ Trees

� How can we efficiently lock a particular leaf
node?
� Btw, don’ t confuse this with multiple granularity

locking!

� One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.

� This has terrible performance!
� Root node (and many higher level nodes) become

bottlenecks because every tree access begins at the
root.

8

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

Two Useful Observations

� Higher levels of the tree only direct searches
for leaf pages.

� For inserts, a node on a path from root to
modified leaf must be locked (in X mode, of
course), only if a split can propagate up to it
from the modified leaf. (Similar point holds
w.r.t. deletes.)

� We can exploit these observations to design
efficient locking protocols that guarantee
serializability even though they violate 2PL.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

A Simple Tree Locking Algorithm

� Search: Start at root and go down;
repeatedly, S lock child then unlock parent.

� Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
� If child is safe, release all locks on ancestors.

� Safe node: Node such that changes will not
propagate up beyond this node.
� Inserts: Node is not full.
� Deletes: Node is not half-empty.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

A Better Tree Locking Algorithm

� Search: As before.
� Insert/Delete:

� Set locks as if for search, get to leaf, and set
X lock on leaf.

� If leaf is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

� Gambles that only leaf node will be modified;
if not, S locks set on the first pass to leaf are
wasteful. In practice, better than previous alg.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Delete 38*
2) Insert 25*
4) Insert 45*
5) Insert 45*,

then 46*

23

