Relational Algebra

Chapter 4, Part A

Database Systems, R. and J. Gehrke

Relational Query Languages

« Query languages: Allow manipulation and retrieval
of data from a database.
+ Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
+ Query Languages != programming languages!
- QLs not expected to be “Turing complete”.
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Database Systems, R. and J. Gehrke 2

\Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

© Relational Algebra: More operational, very
useful for representing execution plans.

® Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-operational, declarative.)

@ Understanding Algebra & Calculus is key to

@ understanding SQL, query processing!

Database Systems, R. and J. Gehrke

\Preliminaries

« A query is applied to relation instances, and the
result of a query is also a relation instance.

- Schemas of input relations for a query are fixed (but
query will run regardless of instance!)

- The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

+ Positional vs. named-field notation:

- Positional notation easier for formal definitions,
named-field notation more readable.

- Both used in SQL

Database Systems, R. and J. Gehrke

R1 |sid bid day

Example Instances |22 101 10/10/9
\ 58 103 |11/12/96

QAT e “ ”
e ilors” and “Reserv: . .
Sailors” and "Reserves sid sname rating age

relations for our examples. S1 :
+ We'll use positional or 22 |dustin 7 450
named field notation, 31 |lubber 8 55.5
assume that names of fields 58 |rusty 10 135.0

in query results are

“inherited’ from names of s2 [sid [sname |rating age

fields in query input 28
relations.

yuppy 9 35.0
31 |lubber & 8 55.5
44 |guppy | 5 35.0
58 |rusty 10 35.0

Database Systems, R. and J. Gehrke

Relational Algebra

<+ Basic operations:

- Selection (O') Selects a subset of rows from relation.

- Projection () Deletes unwanted columns from relation.
Cross-product (X) Allows us to combine two relations.
Set-difference (—) Tuples in reln. 1, but not in reln. 2.
Union (U) Tuples in reln. 1 and in reln. 2.

+ Additional operations:
- Intersection, join, division, renaming: Not essential, but
(very!) useful.
% Since each operation returns a relation, operations

can be composed! (Algebra is “closed”.)

Database Systems, R. and J. Gehrke

. . sname |rating
Projection yuppy |9
Y " h . lubber |8
% Del 'ete§ att'rl utes that are not in guppy |5
projection list. rusty |10
% Schema of result contains exactly $2)
the fields in the projection list, :
with the same names that they sname,rating
had in the (only) input relation.
%+ Projection operator has to
eliminate duplicates! (Why??) age
- Note: real systems typically 35.0
don’t do duplicate elimination 55.5
unless the user explicitly asks
for it. (Why not?) /3 a ge(SZ)
Database Systems, R. and J. Gehrke 7

sid |sname rating age

\Selectzon 28 yuppy 9 a0
58 |rusty |10 35.0

% Selects rows that satisfy
selection condition. . (52)
% No duplicates in result! rating>8
(Why?)
> Schema of result
identical to schema of
(only) input relation.
Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

Database Systems, R.

sname |rating
yuppy |9
rusty |10

3

(c (52))

T . .
sname,rating ratmg>8

and J. Gehrke

Union, Intersection, Set-Difference

sid |sname rating |age

« All of these operations take 22 \dustin |7 45.0
two input relations, which |31 |lubber |8 55.5
must be union-compatible: 58 |rusty 10 35.0

- Same number of fields. 44 |guppy 5 35.0
- “Corresponding’ fields 28 |yuppy 9 35.0

have the same type. S1uS2

%+ What is the schema of result?
sid sname |rating age

sid sname

Cross-Product
« Each row of S1 is paired with each row of R1.

Result schema has one field per field of S1 and R1,
with field names “inherited” if possible.

- Conflict: Both S1 and R1 have a field called sid.
(sid) |sname rating age (sid) bid day
22 |dustin 7 450 | 22 101 10/10/96
22 \dustin | 7 450 58 103 11/12/96
31 |lubber 8 555 | 22 101 10/10/96
31 lubber 8 555 | 58 103 11/12/96
58 rusty 10 1350 22 101 10/10/96
58 |rusty 10 350 58 103 11/12/96

& Renaming operator: P (C(1—> sidl,5— sid2), SIXR1)

Database Systems, R. and J. Gehrke

Database Systems, R.

rating age 31 lubber |8 55.5
22 | dustin |7 45.0 58 rusty 10 35.0
S1-82 SINS2
Database Systems, R. and J. Gehrke 9
Joins

% Condition Join: Rp< cS =0 (RXS)

(sid) |sname rating |age ((sid) bid |day
22 dustin |7 45.0 58 103 |11/12/96
31 lubber 8 55.5 58 103 |11/12/96

S1

> S1.sid < Rlsia |1
+ Result schema same as that of cross-product.

+ Fewer tuples than cross-product, might be
able to compute more efficiently

+ Sometimes called a theta-join.
and J. Gehrke 11

\]oins

% Equi-Join: A special case of condition join where
the condition ¢ contains only equalities.

sid sname rating age |bid day

22 dustin |7 45.0 101 10/10/96
58 rusty 10 35.0 |103 11/12/96
NS sid Rl

% Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

% Natural Join: Equijoin on all common fields.

Database Systems, R. and J. Gehrke

Division

% Not supported as a primitive operator, but useful for
expressing queries like:
Find sailors who have reserved all boats.
+ Let A have 2 fields, x and y; B have only field y:

- AB= {{(x)| I(x,y)eA V(y) e B}
- i.e., A/B contains all x tuples (sailors) such that for every y
tuple (boat) in B, there is an xy tuple in A.
- Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.
+ In general, x and y can be any lists of fields; y is the
list of fields in B, and xUy is the list of fields of A.

Database Systems, R. is| and J. Gehrke 13

\Examples of Division A/B

sno | pno pno pno pno
sl pl p2 p2 pl
sl p2 B1 p4 P2
sl p3 B2 p4
sl p4 B3
s2 pl sno
s2 p2 sl
s3 | p2 s2 sno
s4 p2 s3 sl sno
s4 p4 s4 s4 sl
A A/B1 A/B2 A/B3
Database Systems, R. s and J. Gehrke 14

\Expressing A/B Using Basic Operators

+ Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems
implement joins specially.)
« Idea: For A/B, compute all x values that are not
“disqualified’” by some y value in B.
- x value is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 7 (7 x(A)X B)-A)

A/B: T x(A) — all disqualified tuples

Database Systems, R. is| and J. Gehrke 15

iind names of sailors who’ve reserved boat #103

< Solution1: =7«

sname((O bid=103 Reserves) > Sailors)

% Solution2: p (Templ, o Reserves)

bid=103
p (Temp2, Templ >< Sailors)
(Temp?2)

ﬂ-sname

< Solution 3: 7 g0me (O'bid:103(Reserves><1 Sailors))

Database Systems, R. J and J. Gehrke 16

\Find names of sailors whove reserved a red boat

+ Information about boat color only available in
Boats; so need an extra join:

/4 Boats) ><1 Reserves>< Sailors)

o
sname((color="red'

<+ A more efficient solution:

V.4 Boats) ><1 Res)><t Sailors)

sname'™ sid((ﬂbid eolor="red'

@ A query optimizer can find this given the first solution!

Database Systems, R. and J. Gehrke 17

ind sailors who’ve reserved a red or a green boat

+ Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

p (Tempboats, (o Boats))

color="red' v color='green'
7 snameTempboats>< Reserves><t Sailors)

% Can also define Tempboats using union! (How?)

+ What happens if Vv isreplaced by A in this query?

Database Systems, R. and J. Gehrke 18

ind sailors who’ve reserved a red and a green boat

« Previous approach won’t work! Must identify
sailors who've reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

p (Tempred, ”si d((c)'co lor= red’ Boats)><t Reserves))

p (Tempgreen, ﬂs ((Boats)>< Reserves))

(o
id " color= green'

7 sname(Tempred M Tempgreen) >< Sailors)

Database Systems, R. is| and J. Gehrke 19

%d the names of sailors who ve reserved all boats

« Uses division; schemas of the input relations
to / must be carefully chosen:

p (Tempsids, (7 Reserves) / (ﬂ'bi Boats))

sid,bid

7 sname (Tempsids>< Sailors)

d

« To find sailors who've reserved all ‘Interlake’ boats:

""" / ﬂ-bid (© bname=Interlake

Database Systems, R. J and J. Gehrke 20

Boats)

\Summary

% The relational model has rigorously defined
query languages that are simple and
powerful.

+ Relational algebra is more operational; useful
as internal representation for query
evaluation plans.

+ Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

Database Systems, R. is| and J. Gehrke 21

