
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Physical Database Design

Chapter 20

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Overview

v After ER design, schema refinement, and the
definition of views, we have the conceptual and
external schemas for our database.

v The next step is to choose indexes, make clustering
decisions, and to refine the conceptual and external
schemas (if necessary) to meet performance goals.

v We must begin by understanding the workload:
– The most important queries and how often they arise.
– The most important updates and how often they arise.
– The desired performance for these queries and updates.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Understanding the Workload

v For each query in the workload:
– Which relations does it access?
– Which attributes are retrieved?
– Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?

v For each update in the workload:
– Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?
– The type of update (INSERT/DELETE/UPDATE), and the

attributes that are affected.

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Decisions to Make

v What indexes should we create?
– Which relations should have indexes? What field(s) should

be the search key? Should we build several indexes?

v For each index, what kind of an index should it be?
– Clustered? Hash/tree? Dynamic/static? Dense/sparse?

v Should we make changes to the conceptual schema?
– Consider alternative normalized schemas? (Remember,

there are many choices in decomposing into BCNF, etc.)
– Should we ``undo’’ some decomposition steps and settle

for a lower normal form? (Denormalization.)
– Horizontal partitioning, replication, views ...

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Choice of Indexes

v One approach: consider the most important queries in
turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.

v Before creating an index, must also consider the
impact on updates in the workload!
– Trade-off: indexes can make queries go faster, updates

slower. Require disk space, too.

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Issues to Consider in Index Selection

v Attributes mentioned in a WHERE clause are
candidates for index search keys.
– Exact match condition suggests hash index.
– Range query suggests tree index.

u Clustering is especially useful for range queries,
although it can help on equality queries as well in the
presence of duplicates.

v Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per
relation, choose it based on important queries that
would benefit the most from clustering.

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Issues in Index Selection (Contd.)
v Multi-attribute search keys should be considered

when a WHERE clause contains several conditions.
– If range selections are involved, order of attributes should

be carefully chosen to match the range ordering.
– Such indexes can sometimes enable index-only strategies

for important queries.
u For index-only strategies, clustering is not important!

v When considering a join condition:
– Hash index on inner is very good for Index Nested Loops.

u Should be clustered if join column is not key for inner,
and inner tuples need to be retrieved.

– Clustered B+ tree on join column(s) good for Sort-Merge.
Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Example 1

v Hash index on D.dname supports ‘Toy’ selection.
– Given this, index on D.dno is not needed.

v Hash index on E.dno allows us to get matching (inner)
Emp tuples for each selected (outer) Dept tuple.

v What if WHERE included: `` ... AND E.age=25’’ ?
– Could retrieve Emp tuples using index on E.age, then join

with Dept tuples satisfying dname selection. Comparable to
strategy that used E.dno index.

– So, if E.age index is already created, this query provides
much less motivation for adding an E.dno index.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Example 2

v Clearly, Emp should be the outer relation.
– Suggests that we build a hash index on D.dno.

v What index should we build on Emp?
– B+ tree on E.sal could be used, OR an index on E.hobby

could be used. Only one of these is needed, and which is
better depends upon the selectivity of the conditions.

u As a rule of thumb, equality selections more selective
than range selections.

v As both examples indicate, our choice of indexes is
guided by the plan(s) that we expect an optimizer to
consider for a query. Have to understand optimizers!

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Examples of Clustering
v B+ tree index on E.age can be

used to get qualifying tuples.
– How selective is the condition?
– Is the index clustered?

v Consider the GROUP BY query.
– If many tuples have E.age > 10, using

E.age index and sorting the retrieved
tuples may be costly.

– Clustered E.dno index may be better!

v Equality queries and duplicates:
– Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Clustering and Joins

v Clustering is especially important when accessing
inner tuples in INL.
– Should make index on E.dno clustered.

v Suppose that the WHERE clause is instead:
WHERE E.hobby=‘Stamps AND E.dno=D.dno
– If many employees collect stamps, Sort-Merge join may be

worth considering. A clustered index on D.dno would help.

v Summary: Clustering is useful whenever many tuples
are to be retrieved.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Multi-Attribute Index Keys

v To retrieve Emp records with age=30 AND sal=4000, an
index on <age,sal> would be better than an index on
age or an index on sal.
– Such indexes also called composite or concatenated indexes.
– Choice of index key orthogonal to clustering etc.

v If condition is: 20<age<30 AND 3000<sal<5000:
– Clustered tree index on <age,sal> or <sal,age> is best.

v If condition is: age=30 AND 3000<sal<5000:
– Clustered <age,sal> index much better than <sal,age> index!

v Composite indexes are larger, updated more often.

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

Index-Only Plans

v A number of
queries can be
answered
without
retrieving any
tuples from one
or more of the
relations
involved if a
suitable index
is available.

SELECT D.mgr
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.eid>
Tree index!

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
or

<E.sal, E.age>
Tree!

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Summary

v Database design consists of several tasks:
requirements analysis, conceptual design, schema
refinement, physical design and tuning.
– In general, have to go back and forth between these tasks to

refine a database design, and decisions in one task can
influence the choices in another task.

v Understanding the nature of the workload for the
application, and the performance goals, is essential to
developing a good design.
– What are the important queries and updates? What

attributes/relations are involved?

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Summary (Contd.)

v Indexes must be chosen to speed up important
queries (and perhaps some updates!).
– Index maintenance overhead on updates to key fields.
– Choose indexes that can help many queries, if possible.
– Build indexes to support index-only strategies.
– Clustering is an important decision; only one index on a

given relation can be clustered!
– Order of fields in composite index key can be important.

v Static indexes may have to be periodically re-built.
v Statistics have to be periodically updated.

