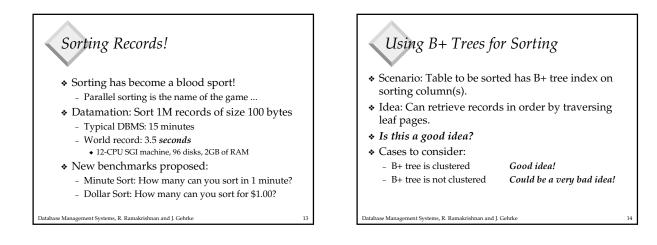
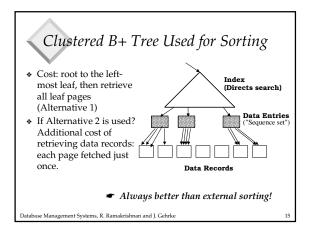
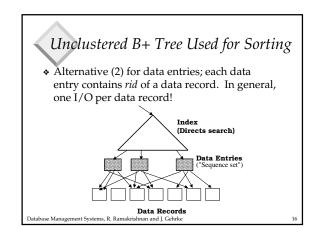

4	Number of Passes of External Sort								
	Ν	B=3	B=5	B=9	B=17	B=129	B=257		
	100	7	4	3	2	1	1		
	1,000	10	5	4	3	2	2		
	10,000	13	7	5	4	2	2		
	100,000	17	9	6	5	3	3		
	1,000,000	20	10	7	5	3	3		
	10,000,000	23	12	8	6	4	3		
	100,000,000	26	14	9	7	4	4		
	1,000,000,000	30	15	10	8	5	4		
Dat	Database Management Systems, R. Ramakrishnan and J. Gehrke 7								







Number of Passes of Optimized So								
N	B=1,000	B=5,000	B=10,000					
100	1	1	1					
1,000	1	1	1					
10,000	2	2	1					
100,000	3	2	2					
1,000,000	3	2	2					
10,000,000	4	3	3					
100,000,000	5	3	3					
1,000,000,000	5	4	3					

External Sorting vs. Unclustered Index										
N	Sorting	p=1	p=10	p=100						
100	200	100	1,000	10,000						
1,000	2,000	1,000	10,000	100,000						
10,000	40,000	10,000	100,000	1,000,000						
100,000	600,000	100,000	1,000,000	10,000,000						
1,000,000	8,000,000	1,000,000	10,000,000	100,000,000						
10,000,000	80,000,000	10,000,000	100,000,000	1,000,000,000						
 <i>p</i>: # of records per page <i>B</i>=1,000 and block size=32 for sortin 										

Summary

- External sorting is important; DBMS may dedicate part of buffer pool for sorting!
- External merge sort minimizes disk I/O cost:
 Pass 0: Produces sorted *runs* of size *B* (# buffer pages).
 - Later passes: *merge* runs. - # of runs merged at a time depends on *B*, and *block size*.
 - # of runs merged at a time depends of *B*, and *block size*
 - Larger block size means less I/O cost per page.Larger block size means smaller # runs merged.
 - In practice, # of runs rarely more than 2 or 3.
 - In practice, # of runs rarely more than 2 or 5

Database Management Systems, R. Ramakrishnan and J. Gehrke

Summary, cont.

Database Management Systems, R. Ramakrishnan and J. Gehrke

- Choice of internal sort algorithm may matter:
 Quicksort: Quick!
 - Heap/tournament sort: slower (2x), longer runs
- The best sorts are wildly fast:
- Despite 40+ years of research, we're still improving!
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.