
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Introduction to Query Optimization

Chapter 13

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Overview of Query Optimization

❖ Plan: Tree of R.A. ops, with choice of alg for each op.
– Each operator typically implemented using a `pull’

interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

❖ Two main issues:
– For a given query, what plans are considered?

◆ Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

❖ Ideally: Want to find best plan. Practically: Avoid
worst plans!

❖ We will study the System R approach.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Highlights of System R Optimizer

❖ Impact:
– Most widely usedcurrently; works well for < 10 joins.

❖ Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

❖ Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

◆ Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided.
Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Schema for Examples

❖ Similar to old schema; rname added for variations.
❖ Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

❖ Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Motivating Example

❖ Cost: 500+500*1000 I/Os
❖ By no means the worst plan!
❖ Misses several opportunities:

selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.

❖ Goal of optimization: To find more
efficient plans that compute the
same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

� � � � � � ��� � 	 �
 ���

sname

Reserves Sailors

sid=sid

� � � � � � � � � 	 �
 ���

sname

� �� ����� ����� � � � ��� ! ��!� "

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Alternative Plans 1
(No Indexes)

❖ Main difference: push selects.
❖ With 5 buffers, cost of plan:

– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

– Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
– Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
– Total: 3560 page I/Os.

❖ If we used BNL join, join cost = 10+4*250, total cost = 2770.
❖ If we `push’ projections, T1 has only sid, T2 only sid and sname:

– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

� � � � � � �

sname
(On-the-fly)

� � 	 �
 ���(Scan;#%$ � � �&� � �'���%(*) " (Scan;#%$ � � �&� � �'���%(�+ "

(Sort- , � $ - �%. �� /!"

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Alternative Plans 2
With Indexes

❖ With clustered index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.

❖ INL with pipelining (outer is not
materialized).

❖ Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

❖ Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

❖ Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

� � � � � � �

sname
(On-the-fly)

� � � � 	
���

� � � ��� � � �
� 	 � � � � � �
	 � � ��� � � �
� � � � � � � �
temp)

� � 	 � � ��� � � � � ��� � � � � �
� � � ��� � � � � � 	 � 	
�

(On-the-fly)

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Cost Estimation

❖ For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

◆ Depends on input cardinalities.
◆ We’ve already discussed how to estimate the cost of operations

(sequential scan, index scan, joins, etc.)

– Must estimate size of result for each operation in tree!
◆ Use information about the input relations.
◆ For selections and joins, assume independence of predicates.

❖ We’ll discuss the System R cost estimation approach.
– Very inexact, but works ok in practice.
– More sophisticated techniques known now.

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Statistics and Catalogs

❖ Need information about the relations and indexes
involved. Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each

tree index.

❖ Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

❖ More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Size Estimation and Reduction Factors

❖ Consider a query block:
❖ Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
❖ Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.
– Implicit assumption that terms are independent!
– Term col=value has RF 1/NKeys(I), given index I on col
– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Summary
❖ Query optimization is an important task in a

relational DBMS.
❖ Must understand optimization in order to understand

the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

❖ Two parts to optimizing a query:
– Consider a set of alternative plans.

◆ Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
◆ Must estimate size of result and cost for each plan node.
◆ Key issues: Statistics, indexes, operator implementations.

