

- Plan Space: Too large, must be pruned.
 - Only the space of *left-deep plans* is considered.
 - Left-deep plans allow output of each operator to be *pipelined* into the next operator without storing it in a temporary relation.
 Cartesian products avoided.
- * Database Management Systems, R. Ramakrishnan and J. Gehrke

Statistics and Catalogs

- Need information about the relations and indexes involved. *Catalogs* typically contain at least:
 - # tuples (NTuples) and # pages (NPages) for each relation.
 - # distinct key values (NKeys) and NPages for each index.
 - Index height, low/high key values (Low/High) for each
- tree index.
- Catalogs updated periodically.
- Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.
- More detailed information (e.g., histograms of the values in some field) are sometimes stored. Database Management Systems, R. Ramakrishnan and J. Cehrke

ibase Management Systems, R. Ramakrishnan and J. Gehrke

Summary

- Query optimization is an important task in a relational DBMS.
- Must understand optimization in order to understand the performance impact of a given database design (relations, indexes) on a workload (set of queries).
- Two parts to optimizing a query:
- Consider a set of alternative plans.
 - Must prune search space; typically, left-deep plans only.
 - Must estimate cost of each plan that is considered.
 - Must estimate size of result and cost for each plan node.
 Key issues: Statistics, indexes, operator implementations.

Database Management Systems, R. Ramakrishnan and J. Gehrke